Question

Consider the following differential equation date = y2(y2 – 4). (a) Find all critical values. (b) Draw the phase diagram to c

0 0
Add a comment Improve this question Transcribed image text
Answer #1

differential equation is given dy = y(y = 4) da (a) To find critical value, make dy da ie gely=4)=0 y=0,0 y2-4=0 y²4 = 12 y =this point is unstable. at y=-2, dy e values are apooching aie arrows are indicated in above figure. so -a is stable *不 2 0 a

Add a comment
Know the answer?
Add Answer to:
Consider the following differential equation date = y2(y2 – 4). (a) Find all critical values. (b)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 3 (20 points) Consider the following differential equation = y(y2 - 4). (a) Find all...

    Question 3 (20 points) Consider the following differential equation = y(y2 - 4). (a) Find all critical values. (6) Draw the phase diagram to classify each as stable, semi-stable or unstable.

  • 4 Consider the autonomous differential equation y f(v) a) (3 points) Find all the equilibrium solutions (critical...

    4 Consider the autonomous differential equation y f(v) a) (3 points) Find all the equilibrium solutions (critical points). b) (3 points) Use the sign of y f(z) to determine where solutions are increasing / decreasing. Sketch several solution curves in each region determined by the critical points in c) (3 points) the ty-plane. d) (3 points) Classify each equilibrium point as asymptotically stable, unstable, or semi-stable and draw the corresponding phase line. 4 Consider the autonomous differential equation y f(v)...

  • MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER Consider the following autonomous first-order differential equation. dy =...

    MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER Consider the following autonomous first-order differential equation. dy = y219 - y2) Find the critical points and phase portrait of the given differential equation. dx 6 3 3 0 0 ol -6 -6 -3 Classify each critical point as asymptotically stable, unstable, or semi-stable. (List the critical points according to their stability, Enter your answers as a comma-separated list. If there are no critical points in a certain category, enter NONE.) asymptotically stable...

  • For the autonomous first-order order differential equation dy=-18y+2y3, please 1. dx a. find its critical points;...

    For the autonomous first-order order differential equation dy=-18y+2y3, please 1. dx a. find its critical points; b. draw its phase portrait; c. clasify each critical point as asymptotcally stable, unstable, or semi-stable.

  • 1. Consider the family of differential equations done = y2 + ky + kº. (a) Are...

    1. Consider the family of differential equations done = y2 + ky + kº. (a) Are there any equilibrium solutions when k =0? If so, what are they? (b) Draw the bifurcation diagram. That is, sketch a graph of the critical values as a function of the parameter k. Clearly label the axes. (You may use Mathematica for this problem, but your final answer must be drawn by hand.) (c) Draw the phase diagram for when k = -1. For...

  • Consider the nonlinear second-order differential equation where k > 0 is a constant. Answer to the following questio...

    Consider the nonlinear second-order differential equation where k > 0 is a constant. Answer to the following questions (a) Derive a plane autonomous system from the given equation and find all the critical points (b) Classify(discriminate/categorize) all the critical points into one of the three cat- egories: {stable / saddle / unstable(not saddle)) (c) Show that there is no periodic solution in a simply connected region (Hint: Use the corollary to Theorem 11.5.1) Consider the nonlinear second-order differential equation where...

  • Consider the autonomous first-order differential equation y = 10 + 3y – v2 Find the DISTINCT...

    Consider the autonomous first-order differential equation y = 10 + 3y – v2 Find the DISTINCT critical points and classify each as (1) AS for Asymptotically Stable, (2) US for Unstable or (3) SS for Semi-Stable. Enter your answer as a comma separated list of pairs consisting on a critical point and its stability type (e.g. your answer might look like (2,AS), (-3,SS), (7,US)) Critical Point and Stability: For the initial value problem y' = 10 + 3y – y,...

  • 1. For the differential equation (y-y-6) șin(y/2) a) Find the critical points for y in (-6,6) and...

    1. For the differential equation (y-y-6) șin(y/2) a) Find the critical points for y in (-6,6) and lassify the critical points as asymptotically stable, or unstable, or semi stable. b) Sketch approximate but clear solutions corresponding to the initial conditions 1.0 -0.8 -0.6 -0.4 0.2 0.2 0.4 0.6 0.8 1.0 -2 .6 1. For the differential equation (y-y-6) șin(y/2) a) Find the critical points for y in (-6,6) and lassify the critical points as asymptotically stable, or unstable, or semi...

  • For the equation (dp/dt)=(P+2)(P^2-6P+5) find the equilibrium points and make a phase portrait of the differential...

    For the equation (dp/dt)=(P+2)(P^2-6P+5) find the equilibrium points and make a phase portrait of the differential equation. Classify each equilibrium point as asymptotically stable, unstable or semi-stable. Sketch typical solution curves determined by the graphs of equilibrium solutions.

  • please solve this

    nd the critical points and phase portrait of the given autonomous rst-order differential equation. Classify each critical point as asymptotically stable, unstable, or semi-stable. By hand, sketch typical solution curves in the regions in the xy-plane determined by the graphs of the equilibrium solutions(a) dy/dx= y2-y3(b) dy/dx=(y-2)4

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT