Question

For the autonomous first-order order differential equation dy=-18y+2y3, please 1. dx a. find its critical points; b. draw its
0 0
Add a comment Improve this question Transcribed image text
Answer #1

c) 2 9-9)- ,3,-3 Critial Point is 2013,-3 d y d n

Add a comment
Know the answer?
Add Answer to:
For the autonomous first-order order differential equation dy=-18y+2y3, please 1. dx a. find its critical points;...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER Consider the following autonomous first-order differential equation. dy =...

    MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER Consider the following autonomous first-order differential equation. dy = y219 - y2) Find the critical points and phase portrait of the given differential equation. dx 6 3 3 0 0 ol -6 -6 -3 Classify each critical point as asymptotically stable, unstable, or semi-stable. (List the critical points according to their stability, Enter your answers as a comma-separated list. If there are no critical points in a certain category, enter NONE.) asymptotically stable...

  • Consider the following autonomous first-order differential equation. Find the critical points and phase portrait of...

    Consider the following autonomous first-order differential equation. Find the critical points and phase portrait of the given differential equation. 0 Consider the following autonomous first-order differential equation. Find the critical points and phase portrait of the given differential equation. 0

  • 4 Consider the autonomous differential equation y f(v) a) (3 points) Find all the equilibrium solutions (critical...

    4 Consider the autonomous differential equation y f(v) a) (3 points) Find all the equilibrium solutions (critical points). b) (3 points) Use the sign of y f(z) to determine where solutions are increasing / decreasing. Sketch several solution curves in each region determined by the critical points in c) (3 points) the ty-plane. d) (3 points) Classify each equilibrium point as asymptotically stable, unstable, or semi-stable and draw the corresponding phase line. 4 Consider the autonomous differential equation y f(v)...

  • please solve this

    nd the critical points and phase portrait of the given autonomous rst-order differential equation. Classify each critical point as asymptotically stable, unstable, or semi-stable. By hand, sketch typical solution curves in the regions in the xy-plane determined by the graphs of the equilibrium solutions(a) dy/dx= y2-y3(b) dy/dx=(y-2)4

  • Without solving explicitly, classify the critical points of the given first-order autonomous differential equation as either...

    Without solving explicitly, classify the critical points of the given first-order autonomous differential equation as either asymptotically stable or unstable. All constants are assumed to be positive. (Enter the critical points for each stability category as a comma- separated list. If there are no critical points in a certain category, enter NONE.) dv m = tg - ky dt asymptotically stable VE unstable V mg k х Need Help? Read 1 Talk to a Tutor 2. (-/1 Points] DETAILS ZILLDIFFEQ9...

  • 2. (8 points) Solve the linear, 1st order ODE with initial value: dy dr 3. (7...

    2. (8 points) Solve the linear, 1st order ODE with initial value: dy dr 3. (7 points) Find all critical points and the phase portrait of the autonomous Ist order ODE dy dr -5y+4 Classify each critical point as asymptotically stable, unstable or semi-stable. Sketch typical solution curves in the regions in the ry plane separated by equilibrium solutions. dy dx (S points) Solve the Bernoulli equation:-(- 31-1 7. (8 points) Solve the ODE by variation of parameters: -4y+4y (+...

  • Consider the autonomous first-order differential equation y = 10 + 3y – v2 Find the DISTINCT...

    Consider the autonomous first-order differential equation y = 10 + 3y – v2 Find the DISTINCT critical points and classify each as (1) AS for Asymptotically Stable, (2) US for Unstable or (3) SS for Semi-Stable. Enter your answer as a comma separated list of pairs consisting on a critical point and its stability type (e.g. your answer might look like (2,AS), (-3,SS), (7,US)) Critical Point and Stability: For the initial value problem y' = 10 + 3y – y,...

  • Problem 3. Consider the following continuous differential equation dx dt = αx − 2xy dy dt...

    Problem 3. Consider the following continuous differential equation dx dt = αx − 2xy dy dt = 3xy − y 3a (5 pts): Find the steady states of the system. 3b (15 pts): Linearize the model about each of the fixed points and determine the type of stability. 3b (15 pts): Draw the phase portrait for this system, including nullclines, flow trajectories, and all fixed points. Problem 2 (25 pts): Two-dimensional linear ODEs For the following linear systems, identify the...

  • Consider the following differential equation date = y2(y2 – 4). (a) Find all critical values. (b)...

    Consider the following differential equation date = y2(y2 – 4). (a) Find all critical values. (b) Draw the phase diagram to classify each as stable, semi-stable or unstable.

  • For the equation (dp/dt)=(P+2)(P^2-6P+5) find the equilibrium points and make a phase portrait of the differential...

    For the equation (dp/dt)=(P+2)(P^2-6P+5) find the equilibrium points and make a phase portrait of the differential equation. Classify each equilibrium point as asymptotically stable, unstable or semi-stable. Sketch typical solution curves determined by the graphs of equilibrium solutions.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT