Question

A mass m = 1 kg is attached to the end of a spring of stiffness k = 1 N / m and glides without friction on a horizontal plane. An external force F (t) = 2cos (t) is continuously applied to the mass. The mass is initially at its position of static equilibrium and its speed is zero.

mi WWW FO) X(t) 0

1.Build the problem with Initial values ​​which models this situation.

2.Calculate the displacement of the mass as a function of time.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

män Elt) m=1kg K= 1N/m f = 2 cost According to DAlembert poinciple mä ka= 2 cost alt) ma =f(t) F(+) ji ta = 2 cost ka Apply

Add a comment
Know the answer?
Add Answer to:
A mass m = 1 kg is attached to the end of a spring of stiffness...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a spring of mass 1 Kg attached to a spring obeying Hooke's Law with spring...

    Consider a spring of mass 1 Kg attached to a spring obeying Hooke's Law with spring constant K Problem 4. (15 pts) Consider a spring of mass 1 kg attached to a spring obeying Hooke's Law with spring constant k N/m. Suppose an external force F(t) = 2 cos 3t is applied to the mass, and suppose the spring experiences no damping. Suppose the spring can be displaced 0.2 m by a 1.8 N force. If the spring is stretched...

  • A block of mass m = 3.5 kg is attached to a spring with spring constant...

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 520 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 21° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.16. In the initial position, where the spring is compressed by a distance of d = 0.14 m, the mass is at...

  • A 2.0-kg mass is attached to a spring with a force constant of 98 N/m. The...

    A 2.0-kg mass is attached to a spring with a force constant of 98 N/m. The mass is resting on a frictionless horizontal plane in a similar situation as in Fig. 1. As a horizontal force of 9.8 N is applied to the mass, and it is then released, the amplitude (A) and time period (T) of the SHM generated would be O 0.01 m, 9s O 0.01 cm, 90s O 0.1 m, 0.9 s O 0.1 m, 0.09 s

  • A 4-kg mass is attached to a spring with stiffness 112 N/m. The damping constant for...

    A 4-kg mass is attached to a spring with stiffness 112 N/m. The damping constant for the system is 16/7 N-sec/m. If the mass is pulled 20 cm to the right of equilibrium and given an initial rightward velocity of 2 m/sec, what is the maximum displacement from equilibrium that it will attain? 1 -2/7 617 1 (2+.4/7) 67 2+ meters. The maximum displacement is e (Type an exact answer, using radicals as needed.) A 4-kg mass is attached to...

  • A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m.

    A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 25° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk=0.18. In the initial position, where the spring is compressed by a distance of d = 0.12 m, the mass is at its lowest...

  • A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 28° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.19. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...

  • A 1/3 kg mass is attached to a spring with stiffness 54 N/m... I need help...

    A 1/3 kg mass is attached to a spring with stiffness 54 N/m... I need help please! A5-kg mass is attached to a spring with stiffness 54 N/m. The damping constant for the system is 6 N-sec/m. If the mass is movedm to the left of equilibrium and given an initial leftward velocity of 7 m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency What is the equation of motion? y(t) =...

  • A į kg mass is attached to a spring with stiffness 4N/m and a damping constant...

    A į kg mass is attached to a spring with stiffness 4N/m and a damping constant 1 N sec/m. The mass is displaced im to the left and given a velocity of 1m/sec to the left. (i) Find the equation of motion of the mass. (ii) What kind of motion do you get? Underdamped, overdamped or critically damped? (iii) What is the maximum displacement that the mass will attain?

  • A 3-kg mass is attached to a spring with stiffness 81 N/m. The damping constant for...

    A 3-kg mass is attached to a spring with stiffness 81 N/m. The damping constant for the system is 18/3 N-sec/m. If the mass is pulled 20 cm to the right of equilibrium and given an initial rightward velocity of 3 m/sec, what is the maximum displacement from equilibrium that it will attain? The maximum displacement is meters (Type an exact answer, using radicals as needed.)

  • A 5-kg mass is attached to a spring with stiffness 15 N/m. The damping constant for...

    A 5-kg mass is attached to a spring with stiffness 15 N/m. The damping constant for the system is 10V3 N-sec/m. If the mass is pulled 10 cm to the right of equilibrium and given an initial rightward velocity of 2 m/sec, what is the maximum displacement from equilibrium that it will attain? The maximum displacement is meters. (Type an exact answer, using radicals as needed.)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT