Question

te M of estion M A mass M = 1.2 kg is released from rest. From the initial height of 90 cm above the ground, the mass drops f

0 0
Add a comment Improve this question Transcribed image text
Answer #1

point y Epuf Eeyt Eky a 10-5948 hy z horash 2618-16514- x 190 hua 498-16514 amm 251 3 Epya mghy a 1.2x9.81% 0.49816514 Epy =

Add a comment
Know the answer?
Add Answer to:
te M of estion M A mass M = 1.2 kg is released from rest. From...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • M 7 A mass M = 1.2 kg is released from rest. From the initial height...

    M 7 A mass M = 1.2 kg is released from rest. From the initial height of 75 cm above the ground, the mass drops from an free spring (neither compressed, nor extended) of constant k = 590 N/m The maximum compression of the spring, due to the impact of the dropping mass is sh = 160 mm. Analyse the system with respect to the balance of energy, and the apply the conservation of energy, considering the ground level as...

  • M A mass M-1.2 kg is released from rest. From the initial height of 75 cm...

    M A mass M-1.2 kg is released from rest. From the initial height of 75 cm above the ground, the mass drops from an free spring (neither compressed, nor extended) of constant k = 590 N/m. The maximum compression of the spring, due to the impact of the dropping mass is sh = 160 mm. Analyse the system with respect to the balance of energy, and the apply the conservation of energy, considering the ground level as reference of the...

  • A roller coaster car of mass 800 kg when released from rest at point A (height...

    A roller coaster car of mass 800 kg when released from rest at point A (height h above the ground) slides along the track and inside the loop of radius 16.0 m. The car never loses contact with the track. A) Draw below a free body diagram for the car the car at the top of the loop. B) If the normal force acting on the car at the top is 1500 N, what is the speed of the car...

  • A 0.200 kg block is released from rest at a height h= 1.25 m above the...

    A 0.200 kg block is released from rest at a height h= 1.25 m above the level portion of the track shown below. The track is rough between points A and B, but elsewhere it is frictionless. As the block traverses the 0.850 meters between points A and B, 0.490 J of energy is dissipated as thermal energy. The spring constant of the spring attached to the wall is 225 N/m 0.850 m Where does the block finally come to...

  • A roller coaster car of mass 800 kg when released from rest at point A (height...

    A roller coaster car of mass 800 kg when released from rest at point A (height h above the ground) slides along the track and inside the loop of radius 16.0 m. The car never loses contact with the track. A) Draw below a free body diagram for the car the car at the top of the loop. B) If the normal force acting on the car at the top is 1500 N, what is the speed of the car...

  • A body of mass m = 5 kg is released from rest from a height of...

    A body of mass m = 5 kg is released from rest from a height of 2 m above the ground. (a) What is the kinetic energy of the body just before hitting the ground? (b) At that point, what is its speed?

  • (5 points) A box of mass m is released from rest at the top of a...

    (5 points) A box of mass m is released from rest at the top of a slope of length L at angle θ above the ground. The coefficient of kinetic friction between the box and the slope is μk. (a) (2 points) Draw a figure for the problem, and the free body diagram. and solve for the net forces (b) (1 point) Solve for the net forces along the two axes. (c) (1 point) Solve for acceleration down the slope...

  • 3m Susand a) A block with a mass of 10.0 kg is AS released from rest...

    3m Susand a) A block with a mass of 10.0 kg is AS released from rest at the top of an 1 00.kg inclined track (0 = 30°), at point A, 3.0m above the horizontal (see the figure). The track A to B has a coefficient of kinetic friction of 0.10. The horizontal portion of the track, B to C, is 4.Om long - 4m and is frictionless. At point C, where the horizontal track ends, the block touches the...

  • A package of mass m = 2.00 kg is released from rest at the top of...

    A package of mass m = 2.00 kg is released from rest at the top of an inclined plane as seen in the figure. The package starts out at heighth = 0.200 m above the top of the table, the table height is H = 2.00 m, and 0 = 50.0° R- (a) What is the acceleration (in m/s) of the package while it slides down the incline? 7.50 m/s² (b) What is the speed (in m/s) of the package...

  • 2 m Collar mass = 0.6 kg. It is released from rest at point A and...

    2 m Collar mass = 0.6 kg. It is released from rest at point A and moves down along frictionless vertical rod. Neglect size of collar and diameter of rod. Spring has natural length of 1.6 m and a spring constant of k = 30 N/m. Draw FBD of collar at position between A and C. Specify conditions where collar achieves max vertical displacement s. Use work and energy methods to determine max displacement s. S k = 30 N/m...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT