Question

PROBLEM 2 The elementary liquid phase irreversible reaction (A+B -> C) takes place in a 1 m² Mixed Flow Reactor with the equi
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Hi Given reaction is Please note that this equation can be solved with the heat balance easily. A+B-C Volume of the reactor iHeat released=Hmoles reacted Moles of A reacted=0.5conversion=0.5*0.4-0.2 moles Heat released = H*0.2 moles In the adiabaticParta- In the case of the isothermal reaction we need to remove the heat that will be generated. When we have 30 % conversionve need to assume the same heat removal capacity here. Amount of the heat released = Amount of the heat removed (isothermal o.

Add a comment
Know the answer?
Add Answer to:
PROBLEM 2 The elementary liquid phase irreversible reaction (A+B -> C) takes place in a 1...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • PROBLEM 1 The elementary liquid phase irreversible reaction (A + B -> C) is to be...

    PROBLEM 1 The elementary liquid phase irreversible reaction (A + B -> C) is to be carried out in a flow reactor. An equimolar feed with A and B enters the reactor at 300K at a volumetric flow rate of 2 L/s, and feed molar concentration of A equal to 0.1 kmol/m3 a. A. Calculate the conversion of A that can be achieved in one 500 Liter Mixed Flow Reactor under adiabatic conditions. b. Calculate the conversion of A that...

  • An acid-catalyzed irreversible liquid-phase reaction A B is carried out adiabatically in a CSTR. The reaction is second...

    An acid-catalyzed irreversible liquid-phase reaction A B is carried out adiabatically in a CSTR. The reaction is second order in A. The feed is equimolar A and solvent (S, which contains catalyst), and enters the reactor at a total volumetric flow rate of 10 dm3/min at a concentration of A of 4 mol/L. The feed enters at 300 K. The product and reactant heat capacities are 15 cal/(mol°C), the solvent is 18 cal/(mol°C). The reaction rate constant at 300 K...

  • The elementary gas phase reaction (A <--> 2B) is to be carried out in an adiabatic...

    The elementary gas phase reaction (A <--> 2B) is to be carried out in an adiabatic CSTR. The feed which is at a temperature of 27oC, consists of 80% of A and the remainder inerts. The volumetric flow rate entering the reactor at this temperature is 100 l/min. The concentration of A in the feed at 27oC is 0.5 mol/liter. For 80% of the adiabatic equilibrium conversion, calculate the required reactor volume. DATA: CpA=12 J/mol.K; CpB=10 J/mol.K; CpI=15 J/mol.K deltaHrxn=-75000...

  • The elementary irreversible organic liquid-phase reaction. a+b==>c is carried out adiabatically in a flow reactor. An...

    The elementary irreversible organic liquid-phase reaction. a+b==>c is carried out adiabatically in a flow reactor. An equal molar feed in A and 8 enters at 27'C, and the volumetric flow rate is 2 dm3/sa nd CAo= 0.I k molfm3 graphically.on exal

  • The irreversible reaction A+B -C takes place isothermally and with no volume change. The kinetic rate expression fo...

    The irreversible reaction A+B -C takes place isothermally and with no volume change. The kinetic rate expression follows that of an elementary reaction. Make plots of the ratio of the radius, Re, of a spherical CSTR to the length, L, of a cylindrical plug flow reactor of constant cross section of radius Rp as a function of conversion, when the ratio Re /Rp varies from 1 to 10. The feed to the reactors is an equimolar mixture of A and...

  • Question 1: Design of isothermal reactors 30 Marks The irreversible, gas-phase reaction A+B D is to be carried out...

    Question 1: Design of isothermal reactors 30 Marks The irreversible, gas-phase reaction A+B D is to be carried out in an isotherma °C) plug-flow reactor (PFR) at 5.0 atm. The mole fractions of the feed streams are A 0 B 0.50, and inerts 0.30. The activation energy for the above reaction is 80 000 cal/mol. the pressure drop due to fluid friction in the reactor is so small that it can be ignored, perform the following tasks: 2T a s...

  • QUESTION 2: Design of Multiple Reactors: 30 marks B +C was a a) An elementary reaction...

    QUESTION 2: Design of Multiple Reactors: 30 marks B +C was a a) An elementary reaction A reaction A B +C was carried out in a reactor system using an ideal STR followed by an ideal PER Isothermany. The rate constant is k = 0.4 min ". The volumetric flow rate is 20 L/min. The concentration of A in the feed is 5 moles/L. 1. Calculate the volume of the CSTR necessary to achieve a conversion of 50%. (7 marks)...

  • Design a CSTR for the elementary consecutive gas-phase reactions A - B C. Specify the reactor...

    Design a CSTR for the elementary consecutive gas-phase reactions A - B C. Specify the reactor volume and the area of the heating coil inside the reactor for 50% conversion. a. Calculate the desired operating temperature inside the reactor. b. Calculate the volume of the reactor c. Calculate the area of the heating surface. The effluent stream should contain a ratio CB/Cc of 10. The feed is gas-phase and pure A at 400°C and 4 atm, with a molar flow...

  • . Question 2: The elementary, reversible, organic, liquid-phase reaction is carried out adiabatically in a CSTR...

    . Question 2: The elementary, reversible, organic, liquid-phase reaction is carried out adiabatically in a CSTR where 65% conversion is achiewd Ated'anonn of A and 50% excess 8, enters the reactor at 27°C with a volumetric flow rate of 2 L/s and a Cos of O.1 mol/L culate the temperature inside the reactor 2. Calculate the equilibrium conversion at the operating temperature. How close (in 3. Calculate the CSTR volume percentage) the conversion is from the equilsbrium conversion? If the...

  • The following elementary gas phase reaction A+2B—>C+D Feed is A/B= 1/3 mol A/I =4/1 (mole basis)...

    The following elementary gas phase reaction A+2B—>C+D Feed is A/B= 1/3 mol A/I =4/1 (mole basis) is to be carried out in an isothermal CSTR. Given that: T=500C P=5 atm Ea=15500cal/gmol A=1.5e4 K=A*exp^(-Ea/RT) Qo= 100 L/s Reactor volume= 20,000L a) what are the exit molar flow rates? Fa, Fb, Fc, Fd, Fi b) what is the exit volumetric flow rate Q? 2. The following elementary irreversible gas-phase reaction: A+2B >C+D Is to carried out in an isothermal CSTR. Given that:...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT