Question

Chapter 6, Problem 6/101 Multistep Determine the range of mass m2 for which the system is in equilibrium. The coefficient of

0 0
Add a comment Improve this question Transcribed image text
Answer #1

we know that if the system is in equilibrium it wont that mone. we can determine what forces (mass ma) is equal to move theBy equating sum of forces inxdirection to reo will determine mass me required to mone the block downwards. & fge=0 MN-T2 simWe can see from the sketch above that angle & is P = 90-15 = 75 = 1.3089 M₂ = 0.20 Taong By equating Ti= mag 0.20x1.3089 T1=0

Add a comment
Know the answer?
Add Answer to:
Chapter 6, Problem 6/101 Multistep Determine the range of mass m2 for which the system is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Chapter 6, Problem 6/101 Multistep Determine the range of mass m2 for which the system is...

    Chapter 6, Problem 6/101 Multistep Determine the range of mass m2 for which the system is in equilibrium. The coefficient of static friction between the block and the incline is μ1 = 0.30 and that between the cord and the fixed disk on the block is μ2 = 0.20. The Free-Body diagram of the block is shown. Solve for m2 (the lower limit) in terms of m1. 12 Іш 18 11 m2 m18 T 180 μ,Ν m2 8 N

  • Chapter 6, Reserve Problem 6/045 Determine the range of cylinder mass m for which the system...

    Chapter 6, Reserve Problem 6/045 Determine the range of cylinder mass m for which the system is in equilibrium. The coefficient of friction between the 41-kg block and the incline is 0.14 and that between the cord and cylindrical support is 0.29. u= 0.29 41 kg u= 0.14 16° Answer: kg)<m <<

  • Figure 4 shows a two-mass translational mechanical system. The applied force falt) acts on mass mi....

    Figure 4 shows a two-mass translational mechanical system. The applied force falt) acts on mass mi. Displacements z1 and 22 are absolute positions of masses mi and m2, respectively, measured relative to fixed coordinates (the static equilibrium positions with fa(t) = 0). An oil film with viscous friction coefficient b separates masses mi and m2. Draw the free body diagram and derive the mathematical model of the vibration system using the diagram. falt) Oil film, friction coefficient b K m2...

  • I need the answers for #3, 4, and 5 m A block with mass m1 =...

    I need the answers for #3, 4, and 5 m A block with mass m1 = 9.4 kg is on an incline with an angle 8 = 33' with respect to the horizontal. For the first question there is no friction between the incline and the block. 1) When there is no friction, what is the magnitude of the acceleration of the block? 5.3929 m/s2 Submit 2) Now with friction, the acceleration is measured to be only a = 3.63...

  • m1 A block with mass my = 9.4 kg is on an incline with an angle...

    m1 A block with mass my = 9.4 kg is on an incline with an angle 6 = 33 with respect to the horizontal. For the first question there is no friction between the incline and the block. 1) When there is no friction, what is the magnitude of the acceleration of the block? m/s2 Submit 2) Now with friction, the acceleration is measured to be only a = 3.63 m/s2. What is the coefficient of kinetic friction between the...

  • Consider the system of blocks in the figure below, with m2 = 4.1 kg and θ...

    Consider the system of blocks in the figure below, with m2 = 4.1 kg and θ = 31°. If the coefficient of static friction between block #1 and the inclined plane is μS = 0.23, what is the largest mass m1 for which the blocks will remain at rest? Consider the system of blocks in the figure below, with m2-4.1 kg and θ blocks will remain at rest? 12.56x k 31° If the coefficient of static friction between block #1...

  • A wooden block with mass 0.37 kg rests on a horizontal table, connected to a string...

    A wooden block with mass 0.37 kg rests on a horizontal table, connected to a string that hangs vertically over a friction-less pulley on the table's edge. From the other end of the string hangs a 0.12 kg mass. What minimum coefficient of static friction μ s between the block and table will keep the system at rest? Find the block's acceleration if μ k =0.20.

  • 27 In Fig. 6-31, two blocks are connected over a pulley. The mass of block A...

    27 In Fig. 6-31, two blocks are connected over a pulley. The mass of block A is 10 kg, and the coefficient of kinetic friction between A and the incline is 0.20. Angle theta of the incline is 30°. Block A slides down the incline at constant speed. What is the mass of block B?

  • Problem 1: Two blocks of mass: m, =25 kg and m2=45 kg are connected by that...

    Problem 1: Two blocks of mass: m, =25 kg and m2=45 kg are connected by that passes over a pulley as show in the figure. The coefficients of kinetic and static friction between m, and the table are 0.25 and = 0.45, respectively a massless string 1 (a) Identify and label all forces and draw the free- body diagram for each block (b) Will the system be in static equilibrium? Assume the pulley is frictionless. m2 (e) Find the tension...

  • 1. An unknown mass (mı) on a rough horizontal surface is attached by a wire that passes over a massless, frictionless pulley to a 2.50kg mass (m2) as shown below. The bottom of the hanging mass is 1....

    1. An unknown mass (mı) on a rough horizontal surface is attached by a wire that passes over a massless, frictionless pulley to a 2.50kg mass (m2) as shown below. The bottom of the hanging mass is 1.50m above the floor. The system is released from rest at t-0s and the 2.50kg mass strikes the floor 0.82s later. The system is now returned to its initial position and a 1.20kg mass is placed on top of the block of mass...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT