Question

Chapter - 26 The Refraction of Light: Lenses and Optical Instruments 8. Two converging lenses are separated by 24.0 cm. The f
0 0
Add a comment Improve this question Transcribed image text
Answer #1

+- 12 CM and 2 Us d=24cm gj U,=-360- 7 + I 36 12 = Now [vi 1864] for and lense [ Uz = -(24- V) = -6cm] 1. 보 12 tal- art ist +

Add a comment
Know the answer?
Add Answer to:
Chapter - 26 The Refraction of Light: Lenses and Optical Instruments 8. Two converging lenses are...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Chapter - 26 The Refraction of Light: Lenses and Optical Instruments 8. Two converging lenses are...

    Chapter - 26 The Refraction of Light: Lenses and Optical Instruments 8. Two converging lenses are separated by 24.0 cm. The focal length of each lens is 12.0 cm. An object is placed 36.0 cm to the left of the lens that is on the left. (a) Locate the final image relative to the lens on the right. (b) Obtain the overall magnification. (c) Is the final image real or virtual? (d) Is the final image upright or inverted relative...

  • Chapter 26, Problem 072 Two converging lenses (f1 = 9.00 cm and f2 = 6.00 cm)...

    Chapter 26, Problem 072 Two converging lenses (f1 = 9.00 cm and f2 = 6.00 cm) are separated by 18.0 cm. The lens on the left has the longer focal length. An object stands 16.2 cm to the left of the left-hand lens in the combination. (a) Locate the final image relative to the lens on the right. (b) Obtain the overall magnification. (c) Is the final image real or virtual? With respect to the original object, (d) is the...

  • A converging lens ( f = 12.0 cm) is located 30.0 cam to the left

    A converging lens ( f = 12.0 cm) is located 30.0 cm to the left of a diverging lens ( f = 6.00 cm). A postage stamp is placed 36.0 cm to the left of the converging lens. (a) Locate the final image of the stamp relative to the diverging lens. (b) Find the overall magnification. (c) Is the final image real or virtual? With respect to the original object, is the final image (d) upright or inverted, and is...

  • Chapter-26 The refraction of Light: Lenses and Optical Instruments

    Two converging lenses, each with a focal length of f = 8 cm, are used in combination to form an image of an object that is located do1 = 24 cm to the left of the left lens in the pair. The distance between the lenses is 16 cm. 5.1. Where is the final image located relative to the lens on the right? 5.2. What is the total magnification m of this lens combination?

  • A converging lens with a focal length f1 = 9.00 cm is located 18.0 cm to...

    A converging lens with a focal length f1 = 9.00 cm is located 18.0 cm to the left of a converging lens with index of refraction of 1.52 and a radius R = 6.24 cm. An object stands 14.0 cm to the left of the first lens in the combination. Draw the Ray diagrams! (a) Locate the final image relative to the lens on the right. (b) Obtain the overall magnification. (c) Is the final image real or virtual? With...

  • Use the worked example above to help you solve this problem. Two converging lenses are placed...

    Use the worked example above to help you solve this problem. Two converging lenses are placed d2 = 24.0 cm apart, as shown in figure a, with an object d1 = 36.0 cm in front of lens 1 on the left. (a) If lens 1 has a focal length of f1 = 12.0 cm, locate the image formed by this lens and determine its magnification. q = cm M = (b) If lens 2 on the right has a focal...

  • Two converging lenses, each having a focal length equal to 11.0 cm, are separated by 36...

    Two converging lenses, each having a focal length equal to 11.0 cm, are separated by 36 cm. An object is 22 cm to the left of the first lens. a) Findthe position of the final image using both a ray diagram and the thin-lens equation. cm to the right of the object (b) Is the final image real or virtual? O real O virtual Is the final image upright or inverted? O upright O inverted (c) What is the overall...

  • 9. -15 points KatzPSE1 38.P.076 My Notes Ask Your The figure below shows an object placed a distance doi from one of two converging lenses separated by s 1.00 m. The first lens has focal length fi 23...

    9. -15 points KatzPSE1 38.P.076 My Notes Ask Your The figure below shows an object placed a distance doi from one of two converging lenses separated by s 1.00 m. The first lens has focal length fi 23.0 cm, and the second lens has focal length 2 47.0 cm. An image is formed by light passing through both lenses at a distance = 12.0 cm to the left of the second lens. Include the sign of the value in your...

  • Two converging lenses having focal lengths off, = 11.3 cm and f, - 20.0 cm are...

    Two converging lenses having focal lengths off, = 11.3 cm and f, - 20.0 cm are placed d = 50.0 cm apart, as shown in the figure below. The final image is to be located between the lenses, at the position x = 33.3 cm Indicated. 12 Object Final image (5) How far (in cm) to the left of the first lens should the object be positioned? cm (b) What is the overall magnification of the system? (c) is the...

  • Two converging lenses (f1 = 9.00 cm and f2 = 6.00 cm) are separated by 18.0...

    Two converging lenses (f1 = 9.00 cm and f2 = 6.00 cm) are separated by 18.0 cm. The lens on the left has the longer focal length. An object stands 14.7 cm to the left of the left-hand lens in the combination. (a) Locate the final image relative to the lens on the right. (b) Obtain the overall magnification.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT