Question

Water flows steadily through a curved duct that turns the flow through angle @= 135º, as shown in Fig. 3. The cross-sectional

0 0
Add a comment Improve this question Transcribed image text
Answer #1

sol P. gauge A B, XPAN Fy control volume B₂ X PA₂ ur -P2 gauge Az Fx - Horizontal Force exerted by water on the wall of DuctGiven Data - 135 = 45° A = 0.025m A = 0.05m v=6m/sec apply conservation of mass 8. Av = 8₂ M₂ V2 6X0,025 = 3 m/sec 0.05 8 = 1

Add a comment
Know the answer?
Add Answer to:
Water flows steadily through a curved duct that turns the flow through angle @= 135º, as...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • asap please, will rate! 3. Water flows steadily through a curved duct that turns the flow...

    asap please, will rate! 3. Water flows steadily through a curved duct that turns the flow through angle 0= 135º, as shown in Fig. 3. The cross-sectional area of the duct changes from Aj 0.025 m² at the inlet to A2 = 0.05 m² at the outlet. The average velocity at the duct inlet is V1 = 6 m/s. The momentum flux correction factor may be taken as Bi= 1.01 at the duct inlet and B2 = 1.03 at the...

  • Water flows steadily through a curved duct that turns the flow through angle = 135 degrees,...

    Water flows steadily through a curved duct that turns the flow through angle = 135 degrees, as shown in Fig. 3. The cross-sectional area of the duct changes from A1 = 0.025 m2 at the inlet to A2 = 0.05 m2 at the outlet. The average velocity at the duct inlet is V1 = 6 m/s. The momentum flux correction factor may be taken as 1 = 1.01 at the duct inlet and 2 = 1.03 at the its outlet....

  • please help...add sketch Water flows steadily through a curved duct that turns the flow through angle...

    please help...add sketch Water flows steadily through a curved duct that turns the flow through angle = 1359, as shown in Fig. 3. The cross-sectional area of the duct changes from A1 = 0.025 m’ at the inlet to Az = 0.05 m² at the outlet. The average velocity at the duct inlet is V1 = 6 m/s. The momentum flux correction factor may be taken as B - 1.01 at the duct inlet and B = 1.03 at the...

  • Water (density = 1000 kg/m3) flows through a duct that makes a 180 degree U-shaped bend...

    Water (density = 1000 kg/m3) flows through a duct that makes a 180 degree U-shaped bend (see below). Assume that the fluid is incompressible through the duct and the velocity at the inlet is V1 = 24 m/s. Assume that the momentum-flux correction factor at both inlet (point 1) and outlet (point 2) is 2.1. The gage pressures are P1 = 120 kPa at the inlet and P2 = 248 kPa at the outlet of the bend. The inlet is...

  • Question 2 (a) An incompressible fluid of density ρ and viscosity μ flows through a curved...

    Question 2 (a) An incompressible fluid of density ρ and viscosity μ flows through a curved duct that turns the flow through angle θ. (ii) (iii) (i) Write an expression for the horizontal force F of the fluid on the walls of the duct in 4 marks) terms of the given variables (ignore the gravity); Calculate the force Fx, when: θ = 135°, ρ = 9982 kg/m , μ=1.003x10-3 kg/m.s., Al = 0.025 m2, A2-0.05 m, Vi-6 m/s, Plaage-78.47 kPa,...

  • 4. CO2 flows steadily through the duct shown from 350 kPa, 60°C, and 120 m/s at...

    4. CO2 flows steadily through the duct shown from 350 kPa, 60°C, and 120 m/s at the inlet state to M -1.3 at the outlet, where local isentropic stagnation conditions are known to be 385 kPa and 350 K. Compute the local isentropic stagnation pressure and temperature at the inlet and the static pressure and temperature at the duct outlet. Flow Inlet Outlet

  • Liquid water flows steadily through a work producing device with a mass flow rate of 100...

    Liquid water flows steadily through a work producing device with a mass flow rate of 100 kg/s. At the inlet the conditions are: p1=1000 kPa, T1=25 deg-C, Vel1 = 30 m/s. At the exit, p2=100 kPa, u2= u1 (specific internal energy remains constant), and Vel2 = 20 m/s. Assume no heat transfer, no change in elevation between the inlet and exit, and density of water to be 1000 kg/m3. (a). Determine the power produced (w/o neglecting the effect of change...

  • Liquid saline flows steadily along the duct in Figure 1, which is part of an infusion set. The du...

    Liquid saline flows steadily along the duct in Figure 1, which is part of an infusion set. The duct has constant cross-sectional area Ao-18 mm. The fluid velocity at the inlet section is Vo 0.35 m/s. A drug is added to the saline through a side port connected to the main duct at an angle θ 45°. The cross-sectional area of the side access is A1-10 mm2 and the drug is injected with velocity V,-0.8 m/s. The drug has the...

  • Air flows through a constant area duct. The pressure and temperature of the air at the...

    Air flows through a constant area duct. The pressure and temperature of the air at the inlet to the duct are P1 = 100 kPa absolute, and T1 = 298 K, respectively. Inlet Mach number is M1 = 0.1. Heat is transferred to the air as it flows through the duct and as a result the Mach number at the exit increases. a) Find the pressure and temperature at the exit, while the exit Mach number changes between M=0.2 to...

  • A pump moving hexane is illustrated in Figure P2.42. The flow rate is 0.02 m3 /s;...

    A pump moving hexane is illustrated in Figure P2.42. The flow rate is 0.02 m3 /s; inlet and outlet gage pressure readings are–4 kPa and 190 kPa, respectively. Determine the required power input to the fluid as it flows through the pump. 7.5 cm P2 P1 1.5 m motor pump 1.0 m 10 cm FIGURE P2.42

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT