Question

Required Information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to retum to this pa
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution :- o from saturated Refrigerant 134a Pressure table ; 2 At lookfa : 0.19254 m3/kg g@ kPa hoz ngon z KJ/kg 234.44 1001 MPa : (kJirg) 8 (Kis/lg 1) 21.71 0.9199 he 0.95183 282.74 0.9525 has 282.74 Dag5183 - 0.9525 :) (27.1.7) – 282.74) 09179 -0

Add a comment
Know the answer?
Add Answer to:
Required Information NOTE: This is a multi-part question. Once an answer is submitted, you will be...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to...

    NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Refrigerant-134a enters an adiabatic compressor as saturated vapor at 100 kPa at a rate of 1.3 m3/min and exits at 1-MPa pressure. The isentropic efficiency of the compressor is 87 percent. 1 MPa R-134a Compressor 100 kPa sat. vapor Determine the temperature of the refrigerant at the exit of the compressor. Use the tables for R-134a. (You must provide an...

  • NOTE: This is a multi-part question Once an answer is submitted you will be unable to return to t...

    NOTE: This is a multi-part question Once an answer is submitted you will be unable to return to this part Consider a two-stage cascade refrigeration system operating between the pressure limits of 1.4 MPa and 140 kPa with refrigerant-134a as the working fluid. Heat rejection from the lower cycle to the upper cycle takes place in an adiabatic counterflow heat exchanger where the pressure in the upper and lower cycles are 0.7 and 08 MPa, respectively. In both cycles, the...

  • Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be...

    Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Refrigerant-134a enters the coils of the evaporator of a refrigeration system as a saturated liquid-vapor mixture at a pressure of 140 kPa. The refrigerant absorbs 175 kJ of heat from the cooled space, which is maintained at -10°C, and leaves as saturated vapor at the same pressure. Determine the entropy change of the refrigerant. Use the tables for...

  • 6. Refrigerant-134a enters an adiabatic compressor as saturated vapor at 100 kPa at a rate of...

    6. Refrigerant-134a enters an adiabatic compressor as saturated vapor at 100 kPa at a rate of 0.7 m3/min and exits at 1 MPa pressure. If the isentropic efficiency of the compressor is 87%, determine (a) the temperature of the refrigerant at the exit of the compressor, (b) the power input (in kW), and (c) the rate of entropy generation during this process.

  • Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be...

    Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. The refrigerant-134a is in vapor state at 0.9 MPa and 70°C. The gas constant, the critical pressure, and the critical temperature of refrigerant-134a are: R=0.08149 kPa.mp/kg-K, Tor = 374.2 K, and Par = 4.059 MPa. Use data from the steam tables. Part 3 of 3 10 points Determine the specific volume of refrigerant-134a based on data from tables....

  • Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be...

    Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A 0.9-m3 rigid tank contains refrigerant-134a initially at 160 kPa and 40 percent quality. Heat is now transferred to the refrigerant until the pressure reaches 600 kPa. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the amount of heat transferred. (Please provide an answer before...

  • 1 MPa Isentropic Efficiency of a Compressor Refrigerant-134a enters an adiabatic compressor as a saturated vapor...

    1 MPa Isentropic Efficiency of a Compressor Refrigerant-134a enters an adiabatic compressor as a saturated vapor at 100kPa at a rate of 0.7 m/min and exits at 1-MPa pressure. The isentropic efficiency of the compressor is 87%. R-134a Compressor Isentropic Compressor Work hs-h 100 kPa sat. vapor Actual Compressor Work Determine the refrigerant properties at the inlet and outlet for an isentropic process. Actual 2s entropic procEss Inlet state Determine the actual isentropic enthalpy from the efficiency. (Ans: 289.71 J/kg)...

  • Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be...

    Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Air at 80 kPa and 127°C enters an adiabatic diffuser steadily at a rate of 5400 kg/h and leaves at 100 kPa. The velocity of the airstream is decreased from 230 m/s to 30 m/s as it passes through the diffuser. The gas constant of air is 0.287 kPa·m3/kg·K. The enthalpy of air at the inlet temperature of...

  • -Week 12 6 Help S Required information NOTE: This is a multi-part question. Once an answer is sub...

    -Week 12 6 Help S Required information NOTE: This is a multi-part question. Once an answer is submitted. you wiw be unable to retuwn to this part A two-stage compression refrigeration system operates with refrigerant-134a between the pressure limits of 1.4 MPa and 010 MPa. The refrigerant leaves the condenser as a saturated liquid and is throttled to a flash chamber operating at 0.6 MPa. he flash chamber is maintained at the same pressure as the low pressure discharge which...

  • NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to...

    NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part A 1-m3 rigid tank contains refrigerant-134a initially at 200 kPa and 40 percent quality. Heat is transferred now to the refrigerant from a source at 35°C until the pressure rises to 400 kPa. Determine the entropy change of the refrigerant. Use the tables for R-134a. (You must provide an answer before moving on to the next part.) The entropy change...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT