Question

3 4 points Angular momenturn: A light, rigid rod of length 2 = 1m joins two particles, with masses mi = 3.00kg and my = 4.00k

0 0
Add a comment Improve this question Transcribed image text
Answer #1

2 L= Iw 3 . ין + M2 (42) W (miles) A we? (mit M2) 4 11 (9+4) key (Sradla) (im) 74 12 = 8.75 kg -mo? CS Scanned with CamScanne

Add a comment
Know the answer?
Add Answer to:
3 4 points Angular momenturn: A light, rigid rod of length 2 = 1m joins two...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A light, rigid rod of length l = 1.00 m joins two particles, with masses m1...

    A light, rigid rod of length l = 1.00 m joins two particles, with masses m1 = 4.00 kg and m2 = 3.00 kg, at its ends. The combination rotates in the xy plane about a pivot through the center of the rod (see figure below). Determine the angular momentum of the system about the origin when the speed of each particle is 3.20 m/s. magnitude kg · m2/s direction chose the right one ( +x , -x , +y...

  • A light rigid rod 1.00 m in length joins two particles,withmasses 4.00 kg and 3.00...

    A light rigid rod 1.00 m in length joins two particles, withmasses 4.00 kg and 3.00 kg, at its ends. The combination rotates inthe xy plane about a pivot through the center of the rod(Fig. P11.11). Determine the angular momentum of the system aboutthe origin when the speed of each particle is 6.40 m/s.Figure P11.11

  • A light, rigid rod of length ℓ=1.00 m joins two particles, with masses m₁=4.00 kg and m₂=3.00 kg

    (a) A light, rigid rod of length ℓ=1.00 m joins two particles, with masses m₁=4.00 kg and m₂=3.00 kg, at its ends. The combination rotates in the x y-plane about a pivot through the center of the rod (see figure below). Determine the angular momentum of the system about the origin when the speed of each particle is 7.60 m / s. (Enter the magnitude to at least two decimal places in kg · m² / s.)(b) What If? What...

  • (a) A light, rigid rod of length ℓ=1.00 m joins two particles, with masses m₁=4.00 kg and m₂=3.00 kg

    (a) A light, rigid rod of length ℓ=1.00 m joins two particles, with masses m₁=4.00 kg and m₂=3.00 kg, at its ends. The combination rotates in the x y-plane about a pivot through the center of the rod (see figure below). Determine the angular momentum of the system about the origin when the speed of each particle is 7.60 m / s. (Enter the magnitude to at least two decimal places in kg · m² / s.)(b) What If? What...

  • A rigid, massless rod has three particles with equal masses attached to it as shown in Figure P8.59.

    A rigid, massless rod has three particles with equal masses attached to it as shown in Figure P8.59. The rod is free to rotate in a vertical plane about a friction-less axle perpendicular to the rod through the point Pand is released from rest in the horizontal position at t - 0. Assuming m and d are known, find (a) the moment of inertia of the system (rod plus particles) about the pivot, (b) the torque acting on the system...

  • A light rod of length ℓ = 1.00 m rotates about an axis perpendicular to its...

    A light rod of length ℓ = 1.00 m rotates about an axis perpendicular to its length and passing through its center as in the figure below. Two particles of masses m1 = 4.80 kg and m2 = 3.00 kg are connected to the ends of the rod. (a) Neglecting the mass of the rod, what is the system's kinetic energy when its angular speed is 2.20 rad/s? J (b) Repeat the problem, assuming the mass of the rod is...

  • Four particles with masses 4 kg, 6 kg, 4 kg, and 6 kg are connected by rigid rods of negligible mass as shown.

    011. Four particles with masses 4 kg, 6 kg, 4 kg, and 6 kg are connected by rigid rods of negligible mass as shown. The origin is centered on the mass in the lower left corner. The rectangle is 6 m wide and 5 m long. If the system rotates in the xy plane about the z axis (origin, O) with an angular speed of 5 rad/s, calculate the moment of inertia of the system about the z axis. 012. Find the...

  • A uniform thin rod of length 0.95 m and mass 1.2 kg lies in a horizontal...

    A uniform thin rod of length 0.95 m and mass 1.2 kg lies in a horizontal plane and rotates in that plane about a pivot at one of its ends. The rod makes one rotation every 0.39 second and rotates clockwise as viewed from above its plane of rotation. A)Find the magnitude of the rod’s angular momentum about its rotation axis, in units of kgm^/s. b) find the rotational kinetic energy, in joules, of the rod described in part (a)....

  • Problem III (20 points) A structure is composed of a light rod connected with two end...

    Problem III (20 points) A structure is composed of a light rod connected with two end masses A and B, which is pivoted at 0. The structure is at rest when it is struck by a falling block C. The block C adheres to and travels with B. Assume all masses are particles. The mass of A, B, C is 4 kg, 2 kg, and 2 kg, respectively. Ignore impulse during the impact as the time is very short, and...

  • 0/10 points 1 Provious A light rod of length-1.00 m rotates about an axis perpendicular to...

    0/10 points 1 Provious A light rod of length-1.00 m rotates about an axis perpendicular to connected to the ends of the rod length and passing through its center as in the figure below. Two particles of masses m - 4.35 kg and m2-3.00 kg are (o) Neglecting the mass of the rod, what is the system's kinetic energy when its angular speed is 2.0 radys? Your response differs from the correct answer by more than 10%. Double check your...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT