Question

A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is 0.0863 m, its frequency is

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given that Amplitude, A=0.0863m frequency, f = 2.89 Hz wavelength, is = 113m * Shortest trasverse distance &ľ between maximum* N = Total length of string wave longty 33.5 I 1:13 르 29.6 cycles

Add a comment
Know the answer?
Add Answer to:
A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is...

    A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is 0.0923 m, its frequency is 2.69 Hz, and its wavelength is 1.75 m. (a) What is the shortest transverse distance between a maximum and a minimum of the wave? shortest transverse distance: (b) How much time is required for 51.5 cycles of the wave to pass a stationary observer? time to pass a stationary observer: (c) Viewing the whole wave at any instant, how...

  • A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is...

    A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is 0.0921 m, its frequency is 3.95 Hz, and its wavelength is 1.31 m. (a) What is the shortest transverse distance between a maximum and a minimum of the wave? shortest transverse distance: (b) How much time is required for 58.5 cycles of the wave to pass a stationary observer? time to pass a stationary observer: (c) Viewing the whole wave at any instant, how...

  • 10-15 pls 010 10.0 points A sinusoidal transverse wave travels along a wire of linear density...

    10-15 pls 010 10.0 points A sinusoidal transverse wave travels along a wire of linear density 8.34 g/m. The wave has amplitude 1.2 cm, frequency 132 Hz and wavelength 3.07 m What is the tension of the wire? Answer in units of N 011 (part 1 of 2) 10.0 points A standing wave is formed on a string that is 32 m long, has a mass per unit length 0.00512 kg/m, and is stretched to a tension of 18 N...

  • a sinusoidal traveling transverse string wave with an amplitude of 5.5cm has a frequency of 10...

    a sinusoidal traveling transverse string wave with an amplitude of 5.5cm has a frequency of 10 Hz and travels at 25m/s along the x axis.determine the maximum speed and determine the distance between the high and low spots on the string.

  • Consider a transverse harmonic wave travelling along a string. Enter true (T) or false (F) for the following statements....

    Consider a transverse harmonic wave travelling along a string. Enter true (T) or false (F) for the following statements. For example, if the first statement is true and the rest false, enter TFF. You have 4 tries. Increasing the frequency of the wave increases its wavelength. Increasing the amplitude of the wave increases its wavelength. If a wave with a frequency of 10 Hz travels along a string with a mass per unit length of 40 g/m stretched to a...

  • A sinusoidal transverse wave is travelling along a string in the negative direction of an x...

    A sinusoidal transverse wave is travelling along a string in the negative direction of an x axis. The figure shows a plot of the displacement as a function of position at time t = 0; the y intercept is 4.0 cm. The string tension is 3.3 N, and its linear density is 44 g/m. Find the (a) amplitude, (b) wavelength, (c) wave speed, and (d) period of the wave, (e) Find the maximum transverse speed of a particle in the...

  • Problem 20.62 Part A Constants Periodic Table A sinusoidal wave travels along a stretched string. A...

    Problem 20.62 Part A Constants Periodic Table A sinusoidal wave travels along a stretched string. A particle on the string has a maximum velocity of 0.800 m/s and a maximum acceleration of 270 m/s2 What is the frequency of the wave? Express your answer with the appropriate units. LA 2.4.10-3Hz Submit Previous Answers Request Answer X Incorrect, Try Again; 3 attempts remaining Part B What is the amplitude of the wave? Express your answer with the appropriate units.

  • A string of length 3.00 m is stretched and tied at both ends. A transverse wave...

    A string of length 3.00 m is stretched and tied at both ends. A transverse wave is produced on the string by plucking on it. When the wave travels along, there are exactly two complete cycles on this string. If the wave crest travels on this string with a speed of 20.0 m/s, what is the frequency of the wave?

  • By wiggling one end, a sinusoidal wave is made to travel along a stretched string that...

    By wiggling one end, a sinusoidal wave is made to travel along a stretched string that has a mass per unit length of 22.0 g/m. The wave may be described by the wave function y 0.20 sin (0.90x-42) where x and y are in meters and t s in seconds. 1. (a) Determine the speed of the wave. Is the wave moving in the +x direction or the -x direction? b) What is the tension in the stretched string? (c)...

  • A transverse sinusoidal wave on a string has a period T-17.0 ms and travels in the...

    A transverse sinusoidal wave on a string has a period T-17.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 3.50 m/s. (a) What is the amplitude of the wave? 2.9 Your response differs significantly from the correct answer. Rework your solution from the beginning and check...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT