Question

(2) Steam generated in a Rankine steam power cycle at a pressure of 8 MPa and temperature 600°C is fed to a turbine. Exhaust
1 0
Add a comment Improve this question Transcribed image text
Answer #1

Given Data - Boiler pressure P1 = Py = 8 MPa Condenser pressure P2 = P3 = 100 kPa Turbine inlet Ti = Gooc solution T T-S Diag• h₂= hf+42x hfg @ look la @ look pa - 417.5+0.9434 2257.9 h2 = 2548.28 83 kJ/kg hz=hf 417.5 kJ kJ/kg @look la = O pump workWnet = 108 2.97 kJ/kg a thermal efficiency na Whet = Qs 1082.97.= 0.3369 3213.76 33.6 Aus b Net power = 80,000 kW (Wnet) nx WUp puru efficiency hy-43 hy-h3 3 0.75= 425.74 - 417.5 417.5 hy. hy= 428.406 kJ/kg Actual turbine work => Wq ha ha ha ha = 81

Add a comment
Know the answer?
Add Answer to:
(2) Steam generated in a Rankine steam power cycle at a pressure of 8 MPa and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Steam generated in a Rankine steam power cycle at a pressure of 8 MPa and temperature...

    Steam generated in a Rankine steam power cycle at a pressure of 8 MPa and temperature 600oC is fed to a turbine. Exhaust from the turbine enters a condenser at 100 kPa, where it is condensed to saturated liquid, which is then pumped to the boiler. (a) (20 pts.) What is the thermal efficiency η of an ideal Rankine cycle operating at these conditions? (b) (5 pts.) If the net power production of the cycle is 80,000 kW, what is...

  • Steam generated in a power plant at a pressure of 8,600 kPa and temperature of 600°C...

    Steam generated in a power plant at a pressure of 8,600 kPa and temperature of 600°C is fed to a turbine. Exhaust from the turbine enters a condenser at 10 kPa, where it is condensed to saturated liquid, which is then pumped to the boiler. The turbine and the pump in the Rankine cycle operate at 80% and 75% efficiency, respectively. a. Determine the rates of heat transfer in the boiler b.Determine the rate of heat transfer in the condenser...

  • Consider a steam power plant that operates on an ideal regenerative rankine cycle

    Consider a steam power plant that operates on an ideal regenerative rankine cycle. Steam enters turbine at 6 MPa and 450 deg and is condensed in the condenser at 20 kPa. Bleed Steam is extracted from the turbine at 0.4 MPa to heat the boiler feed-water in an open feed-water heater, water leaves the feed water heater as a saturated liquid. Construct a property table giving the pressure, enthalpy and phase for all the state points identified in the cycle...

  • Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 5 MPa and 500°C and is condensed in the condenser at a pressure of 50 kPa. Heat is supplied to th...

    Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 5 MPa and 500°C and is condensed in the condenser at a pressure of 50 kPa. Heat is supplied to the steam in a furnace maintained at 800 K, and waste heat is rejected to the surroundings at 300 K. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the net work output, (b) the thermal efficiency...

  • thermodynamic 2. A ste am power plant operates on an ideal regenerative Rankine cycle. Steam enters...

    thermodynamic 2. A ste am power plant operates on an ideal regenerative Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is condensed in the condenser at 10 kPa. Steam is extracted from the turbine at 0.5 MPa to heat the feedwater in an open feedwater heater. Water leaves the feedwa ter heater as a saturated liquid. The plant has a net power output of 150 MW. Show the cycle on a T-s dingram, and determine (a)...

  • Tutorial Questions 1 1. Water is the working fluid in an ideal Rankine cycle. The condenser...

    Tutorial Questions 1.1. Water is the working fluid in an ideal Rankine cycle. The condenser pressure is kPa, and saturated vapor enters the turbine at 10 MPa. Determine the heat transfer rates, in kJ per kg of steam flowing, for the working fluid passing through the boiler and condenser and calculate the thermal efficiency.2. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa ....

  • (30 points) Rankine Cycle An ideal Rankine cycle has a turbine power output of 4 MW....

    (30 points) Rankine Cycle An ideal Rankine cycle has a turbine power output of 4 MW. Saturated liquid at 20 kPa leaves the condenser, and the vapor at the exit to the isentropic turbine has a quality of 95 percent. The boiler pressure is 1.4 MPa. a. Find the mass flow rate of the steam (kg/s) b. What is the heat transfer into the boiler? c. What is the thermal efficiency for this cycle? Condenser

  • Problem 5-Irreversible Power cycle A simple power plant cycle has saturated liquid water from a c...

    Problem 5-Irreversible Power cycle A simple power plant cycle has saturated liquid water from a condenser at 100 kPa pumped into a boiler operating at 1.0 MPa. The steam leaves the boiler at 350 °C and is expanded through a turbine with the exit stream having a quality between 0 and 1. If the turbine is 80% efficient and the pump is 90% efficient in this Rankine cycle, what is the overall efficiency of the power cycle? Problem 5-Irreversible Power...

  • Problem 2. (11 points) The ideal simple Rankine operates at a pressure of 100 kPa in...

    Problem 2. (11 points) The ideal simple Rankine operates at a pressure of 100 kPa in the condenser and at a pressure of 4.5 MPa in the evaporator. The liquid leaving the condenser is a saturated mixture with quality x-0.8. The mass flow rate of steam in the cycle is 1.5 kg/s. Plot the cycle on power-generation cycle using steam (a) T-s diagram for steam; and determine (b) What is the maximum temperature (°C) of this Rankine cycle (c) the...

  • A steam plant operates on a reheat Rankine cycle and has a net power output of...

    A steam plant operates on a reheat Rankine cycle and has a net power output of 80MW. Steam enters the high pressure turbine at 10 MPa and 500 °C and the low pressure turbine at 1 MPa and 500 °C. Steam leaves the condenser as a saturated liquid at a pressure of 10kPa. The efficiency of the turbine is 80% and the efficiency of the pump is 95%. Determine the thermal efficiency of the cycle. Rankine Cycle with Reheat

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT