Question

Problem 5-Irreversible Power cycle A simple power plant cycle has saturated liquid water from a condenser at 100 kPa pumped i

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Anasuoey 1 to 2 process (law Ísemhaャle þocess) S a S 2 : 0.8 (31 S8-2639.9) 41 チ·43+R-98 (2644.9-チほ43 ב n. 2子34·57. in

Add a comment
Know the answer?
Add Answer to:
Problem 5-Irreversible Power cycle A simple power plant cycle has saturated liquid water from a c...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 5-Irreversible Power cycle A simple power plant cycle has saturated liquid water from a condenser...

    Problem 5-Irreversible Power cycle A simple power plant cycle has saturated liquid water from a condenser at 100 kPa pumped into a boiler operating at 1.0 MPa. The steam leaves the boiler at 350 °C and is expanded through a turbine with the exit stream having a quality between 0 and 1. If the turbine is 80% efficient and the pump is 90% efficient in this Rankine cycle, what is the overall efficiency of the power cycle?

  • (30 points) Rankine Cycle An ideal Rankine cycle has a turbine power output of 4 MW....

    (30 points) Rankine Cycle An ideal Rankine cycle has a turbine power output of 4 MW. Saturated liquid at 20 kPa leaves the condenser, and the vapor at the exit to the isentropic turbine has a quality of 95 percent. The boiler pressure is 1.4 MPa. a. Find the mass flow rate of the steam (kg/s) b. What is the heat transfer into the boiler? c. What is the thermal efficiency for this cycle? Condenser

  • Consider a steam power plant that operates on a reheat Rankine cycle and has a net...

    Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 74 percent and that of the pump is 95 percent. Determine the quality (or temperature, if superheated) of the...

  • Consider a steam power plant that operates on a reheat Rankine cycle and has a net...

    Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 550°C and the low-pressure turbine at 1 MPa and 550°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the pump is 95 percent. Show the cycle on a T-s diagram with respect...

  • Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the...

    Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the next page), where the boiler pressure is 3 MPa and the condenser saturation temperature is 50°C. The temperature at the exit of the boiler is 500°C. Water leaves the condenser as a saturated liquid. The mass flow rate through each component is 15 kg/s. Calculate: 1. The power output of the steam power plant 2. The thermal efficiency of the steam power plant Now,...

  • 3. (10 pts) A simple Rankine cycle operates with water as the working fluid between the...

    3. (10 pts) A simple Rankine cycle operates with water as the working fluid between the pressures of 4 MPa and 20 kPa. The fluid leaves the boiler at 550°C, the turbine efficiency is 89% and the fluid exits the condenser as saturated liquid. The flow rate is 81.5 kg/s and the pump efficiency is 52%. Determine: a. The net power output, in kW. b. The rate of heat input in the boiler, in kW. C. The rate of heat...

  • You are to analyze a simple steam power plant. At the boiler exit, the pressure is...

    You are to analyze a simple steam power plant. At the boiler exit, the pressure is 8 MPa and the temperature is 1000 °C. The turbine isentropic efficiency is 85%. The condenser pressure is 15 kPa and the water is a saturated liquid at the condenser exit. The pump isentropic efficiency is 80%. Answer the following: a) What is the quality at the exit in %, if the turbine is assumed isentropic? b) What is the work output of the...

  • Steam generated in a Rankine steam power cycle at a pressure of 8 MPa and temperature...

    Steam generated in a Rankine steam power cycle at a pressure of 8 MPa and temperature 600oC is fed to a turbine. Exhaust from the turbine enters a condenser at 100 kPa, where it is condensed to saturated liquid, which is then pumped to the boiler. (a) (20 pts.) What is the thermal efficiency η of an ideal Rankine cycle operating at these conditions? (b) (5 pts.) If the net power production of the cycle is 80,000 kW, what is...

  • (2) Steam generated in a Rankine steam power cycle at a pressure of 8 MPa and...

    (2) Steam generated in a Rankine steam power cycle at a pressure of 8 MPa and temperature 600°C is fed to a turbine. Exhaust from the turbine enters a condenser at 100 kPa, where it is condensed to saturated liquid, which is then pumped to the boiler. (a) (20 pts.) What is the thermal efficiency n of an ideal Rankine cycle operating at these conditions? (b) (5 pts.) If the net power production of the cycle is 80,000 kW, what...

  • C and D please. AGL Energy is expanding the capacity of the Liddell Power Station. The plan is to commission a steam tu...

    C and D please. AGL Energy is expanding the capacity of the Liddell Power Station. The plan is to commission a steam turbine power plant that operates on a regenerative Rankine cycle and has a net power output of 150 MW where steam enters the turbine at 10 MPa and 500°C, and the condenser at 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the both pump is 95 percent. Steam is extracted from the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT