Question

Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the next page), where the boiler pressure is 3 MPa and the condenser saturation temperature is 50°C. The temperature at the exit of the boiler is 500°C. Water leaves the condenser as a saturated liquid. The mass flow rate through each component is 15 kg/s. Calculate:

1. The power output of the steam power plant

2. The thermal efficiency of the steam power plant

Now, the isentropic turbine is replaced by an actual turbine (as shown in the next page), whose isentropic efficiency is T = 80%. Calculate:

1. The new power output of the steam power plant

2. The new thermal efficiency of the steam power plant

3. The rate of entropy generation in the turbine Comment on the change in power output and thermal efficiency between the first case and the second case

Comment on the change in power output and thermal efficiency between the first case and the second case.

1-2 Isentropic compression in a pump 2-3 Constant pressure heat addition in a boiler 3-4 Isentropic expansion in a turbine 4-1 Constant pressure heat rejection in a condenser Wurb.out Wpump.in Turbine Condenser Yout Wturb,out in pumpin FIGURE 10-2 The simple ideal Rankine cycle. The modified Rankine cycle (with an actual turbine) 4a 4s 4a

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a steam power plant that operates on a simple ideal Rankine cycle and has a...

    Consider a steam power plant that operates on a simple ideal Rankine cycle and has a net power output of 45 MW (Wnetout - Wtout - Wpin). Steam enters the isentropic turbine at 7 MPa and 500-C and is cooled in the condenser at a pressure of 10 kPa by running cooling water through the condenser (heat exchanger). Determine the following: (Note: Show the procedure of your solution for all parts) Boiler P3 7 MPa 3 T,-500 °C 2 Pump...

  • Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...

    Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa. Assume an isentropic efficiency of 85 percent for both the turbine and the pump. (a) the quality of the steam at the turbine exit (b) the thermal efficiency of the cycle (c) the mass flow rate of the steam.

  • A steam power plant operates on a simple ideal Rankine cycle between the pressure limits of...

    A steam power plant operates on a simple ideal Rankine cycle between the pressure limits of 6 MPa and 50 kPa. The temperature of the steam at the turbine inlet is 450◦C, and the mass flow rate of steam through the cycle is 50 kg/s. (a) Find the temperature, pressure and specific volume at states 1, 2, 3, and 4. (b) Find the heat supplied, heat rejected, work consumed by the pump, work produced by the turbine, net power generation,...

  • Problem 2. (11 points) The ideal simple Rankine operates at a pressure of 100 kPa in...

    Problem 2. (11 points) The ideal simple Rankine operates at a pressure of 100 kPa in the condenser and at a pressure of 4.5 MPa in the evaporator. The liquid leaving the condenser is a saturated mixture with quality x-0.8. The mass flow rate of steam in the cycle is 1.5 kg/s. Plot the cycle on power-generation cycle using steam (a) T-s diagram for steam; and determine (b) What is the maximum temperature (°C) of this Rankine cycle (c) the...

  • Consider a steam power plant that operates on an ideal regenerative rankine cycle

    Consider a steam power plant that operates on an ideal regenerative rankine cycle. Steam enters turbine at 6 MPa and 450 deg and is condensed in the condenser at 20 kPa. Bleed Steam is extracted from the turbine at 0.4 MPa to heat the boiler feed-water in an open feed-water heater, water leaves the feed water heater as a saturated liquid. Construct a property table giving the pressure, enthalpy and phase for all the state points identified in the cycle...

  • 2) A steam power plant operates on an ideal regenerative rankine cycle with superheated steam leaving...

    2) A steam power plant operates on an ideal regenerative rankine cycle with superheated steam leaving the boiler, entering the turbine at 10 mPa,600C. X fraction of steam is extracted from the turbine at 0.6 mPa pressure for the high pressure open feedwater heater. Then x fraction more of steam is extracted from the turbine at 0.2 mPa pressure for the low pressure open feedwater heater . The condenser pressure in the cycle is 5 kPa. The mass flow rate...

  • 2) Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam...

    2) Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the quality of the steam at the turbine exit, (b) the thermal efficiency of the cycle, and (c) the mass flow rate of the steam.

  • 1. A Steam Power Plant that operates on an ideal regenerative Rankine Cycle with an open...

    1. A Steam Power Plant that operates on an ideal regenerative Rankine Cycle with an open feedwater heater is considered. The turbine inlet conditions are 6 MPa, 450 C. The regeneration pressure is 0.4 MPa. The condenser pressure is 20 kPa. a) Draw the T-s diagram, and the sketch of the steam power plant. b) Calculate the low pressure pump work. c) Calculate the high pressure pump work. d) Calculate the fraction of the steam extracted from the turbine for...

  • Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 5 MPa and 500°C and is condensed in the condenser at a pressure of 50 kPa. Heat is supplied to th...

    Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 5 MPa and 500°C and is condensed in the condenser at a pressure of 50 kPa. Heat is supplied to the steam in a furnace maintained at 800 K, and waste heat is rejected to the surroundings at 300 K. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the net work output, (b) the thermal efficiency...

  • (30 points) Rankine Cycle An ideal Rankine cycle has a turbine power output of 4 MW....

    (30 points) Rankine Cycle An ideal Rankine cycle has a turbine power output of 4 MW. Saturated liquid at 20 kPa leaves the condenser, and the vapor at the exit to the isentropic turbine has a quality of 95 percent. The boiler pressure is 1.4 MPa. a. Find the mass flow rate of the steam (kg/s) b. What is the heat transfer into the boiler? c. What is the thermal efficiency for this cycle? Condenser

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT