Question

3. (10 pts) A simple Rankine cycle operates with water as the working fluid between the pressures of 4 MPa and 20 kPa. The fl
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given that, 1-2 Igentropic compression 2-3 const Preplete Heat abitinn 3-4 Isentropie expansion uri const pre Bule Heat T1 s. actual enthalpy drop -ha-hul Murbine - Ideal enthalpy drop ha-hy 3559.26 - hal 0-89= => 3559.26-hu = 1054.99 3559.26-2373.

Add a comment
Know the answer?
Add Answer to:
3. (10 pts) A simple Rankine cycle operates with water as the working fluid between the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10...

    Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10 Mpa, 560 C with a mass flow rate of 7.8kg/s and exits at 8 kPa. Saturated liquid enters the pump at 8 kPa. The isentropic turbine efficiency is 85%, and the isentropic pump efficiency is 85%. Cooling water enters the adiabatic condenser at 18 C and exits at 36 C with no significant change in pressure and assuming the specific heat of the cooling...

  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8...

    Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 700°C and the turbine exit pressure is 8 kPa. Saturated liquid enters the pump at 8 kPa. The heat transfer rate to the working fluid in the steam generator is 24 MW. The isentropic turbine efficiency is 88%, and the isentropic pump efficiency is 82%. Cooling water enters the condenser at 18°C and exits at 36°C with no significant change in pressure. Determine...

  • A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa...

    A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa and the condenser at 40 kPa. At the entrance to the turbine, the temperature is 380 °C. The isentropic efficiency of the turbine is 88 %, pressure and pump losses are negligible, and the water leaving the condenser is subcooled by 5.9 °C. The boiler is sized for a mass flow rate of 17 kg/s. Determine the following values. °C m®/kg 1 kJ/kg (1)...

  • Tutorial Questions 1 1. Water is the working fluid in an ideal Rankine cycle. The condenser...

    Tutorial Questions 1.1. Water is the working fluid in an ideal Rankine cycle. The condenser pressure is kPa, and saturated vapor enters the turbine at 10 MPa. Determine the heat transfer rates, in kJ per kg of steam flowing, for the working fluid passing through the boiler and condenser and calculate the thermal efficiency.2. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa ....

  • A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits...

    A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 15 MPa in the boiler and 100 kPa in the condenser. Saturated steam enters the turbine. Determine the work produced by the turbine, the heat transferred in the boiler, and thermal efficiency of the cycle. As part of your solution, sketch a simplified diagram of the cycle, labelling each component, indicating where heat and work flows into or out of the system, and...

  • 3) A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000...

    3) A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa and the condenser at 50 kPa. At the entrance to the turbine, the temperature is 450°C. The isentropic efficiency of the turbine is 94 percent, pressure and pump losses are negligible, and the water leaving the condenser is subcooled by 6.3°C. The boiler is sized for a mass flow rate of 20 kg/s. Determine the rate at which heat is added in the...

  • (15 pts.) In an ideal Rankine cycle that uses water as the working fluid. Superheated steam...

    (15 pts.) In an ideal Rankine cycle that uses water as the working fluid. Superheated steam exits the boiler at 4 MPa and 600°C with a mass flow rate of 8 kg/s. The steam leaves the turbine at a pressure of 100 kPa. (a) Sketch the cycle on a T-s diagram (6) Determine the power output of the turbine (c) Determine the rate of heat loss from the condenser (d) The required pump power (e) The rate of heat addition...

  • Steam is the working fluid in a simple, ideal Rankine cycle. Saturated vapor enters the turbine...

    Steam is the working fluid in a simple, ideal Rankine cycle. Saturated vapor enters the turbine at 8 MPa and saturated liquid exits the condenser at a pressure of 8 kPa. The net power output of the cycle is 100 MW. Determine for the cycle: i. Thermal efficiency ii. Back work ratio iii. Mass flow-rate of the steam in kg/h iv. Rate of heat transfer to the working fluid as it passes through the boiler in MW v. Rate of...

  • Consider a power plant with water as working fluid that operates on a reheat Rankine cycle...

    Consider a power plant with water as working fluid that operates on a reheat Rankine cycle and has a net power output of 75 MW. Steam enters the high-pressure turbine at 10 MPa and 400°C and the low-pressure turbine at 1 MPa and 400°C. Water leaves the condenser as a saturated liquid at a pressure of 100 kPa. The isentropic efficiency of the high-pressure turbine is 85% and the low-pressure turbine in 100%. The pump has an isentropic efficiency of...

  • Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters...

    Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters the turbine at 8 MPa, 480℃, and the condenser pressure is 8 kPa. Steam expands through the first stage turbine to 700 kPa and then is reheated to 480℃. Assumptions: see problem 1 . Determine for the cycle(a) the rate of heat addition, in kJ per kg to the working fluid in the steam generator.(b) the thermal efficiency.(c) the rate of heat transfer from the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT