Question

You are to analyze a simple steam power plant. At the boiler exit, the pressure is...

  1. You are to analyze a simple steam power plant. At the boiler exit, the pressure is 8 MPa and the temperature is 1000 °C. The turbine isentropic efficiency is 85%. The condenser pressure is 15 kPa and the water is a saturated liquid at the condenser exit. The pump isentropic efficiency is 80%. Answer the following:

a) What is the quality at the exit in %, if the turbine is assumed isentropic?

b) What is the work output of the actual turbine?

c) What is the work input required by the actual pump?

d) How much heat is added in the boiler?

e) What is the actual thermal efficiency of this steam power plant in %?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

8 MPa NT=0.85 The WT mp=0.80 15 kea N4 Turbine inlet P,=8 MPa Ti = 1000°c from superheated steam table I hi = 4619, 11 kiligTsay = 327.12 k l = 0.00 m² kg, If expansion process in turbine is Isentropic then = > Si=S2 Si= Sf f d (Sg-ff) F.ghl= 0.75 &Isendoopic work done of pump Wp = Vf. de = 0.001 (8000-15) Wps 7.gg kulkg. - Actual work Actual wor done of pump ! Wp = Wp =Work input by actual pump! wp= 9.98 kulkg) I d) Heat added in boiler i Qin = hi ha = 4619-11-235.92 Qin = 4383.19 kilkol e th

Add a comment
Know the answer?
Add Answer to:
You are to analyze a simple steam power plant. At the boiler exit, the pressure is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Steam enters the turbine of a simple vapor power plant with a pressure of 12 Mpa...

    Steam enters the turbine of a simple vapor power plant with a pressure of 12 Mpa and a temperature of 600 ℃ and expands adiabatically to condenser pressure p. The isentropic efficiency of both the turbine and the pump is 84%. (a) For p = 30 kPa, determine the turbine exit quality and the cycle thermal efficiency.

  • Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the...

    Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the next page), where the boiler pressure is 3 MPa and the condenser saturation temperature is 50°C. The temperature at the exit of the boiler is 500°C. Water leaves the condenser as a saturated liquid. The mass flow rate through each component is 15 kg/s. Calculate: 1. The power output of the steam power plant 2. The thermal efficiency of the steam power plant Now,...

  • Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...

    Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa. Assume an isentropic efficiency of 85 percent for both the turbine and the pump. (a) the quality of the steam at the turbine exit (b) the thermal efficiency of the cycle (c) the mass flow rate of the steam.

  • Problem 5-Irreversible Power cycle A simple power plant cycle has saturated liquid water from a c...

    Problem 5-Irreversible Power cycle A simple power plant cycle has saturated liquid water from a condenser at 100 kPa pumped into a boiler operating at 1.0 MPa. The steam leaves the boiler at 350 °C and is expanded through a turbine with the exit stream having a quality between 0 and 1. If the turbine is 80% efficient and the pump is 90% efficient in this Rankine cycle, what is the overall efficiency of the power cycle? Problem 5-Irreversible Power...

  • Consider a steam power plant that operates on a reheat Rankine cycle and has a net...

    Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 550°C and the low-pressure turbine at 1 MPa and 550°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the pump is 95 percent. Show the cycle on a T-s diagram with respect...

  • In the power plant shown in Figure P2 below, steam leaves the boiler at p3 P2...

    In the power plant shown in Figure P2 below, steam leaves the boiler at p3 P2 6 MPa and ??-320°C, flows through the throttling valve, which drops the pressure to p4-4 MPa. then enters the turbine in which it expands to the condenser pressure of p5-10 kPa. The water then leaves the condenser at p 10 kPa and T1-40°C. The net power output is 450 MW. The turbine isentropic efficiency is 85% and that of the pump is 78%. Determine:...

  • Problem 2. (11 points) The ideal simple Rankine operates at a pressure of 100 kPa in...

    Problem 2. (11 points) The ideal simple Rankine operates at a pressure of 100 kPa in the condenser and at a pressure of 4.5 MPa in the evaporator. The liquid leaving the condenser is a saturated mixture with quality x-0.8. The mass flow rate of steam in the cycle is 1.5 kg/s. Plot the cycle on power-generation cycle using steam (a) T-s diagram for steam; and determine (b) What is the maximum temperature (°C) of this Rankine cycle (c) the...

  • Consider a steam power plant that operates on a reheat Rankine cycle and has a net...

    Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 74 percent and that of the pump is 95 percent. Determine the quality (or temperature, if superheated) of the...

  • SP-25 Consider a regenerative steam power plant with one open feedwater heater and one closed fee...

    SP-25 Consider a regenerative steam power plant with one open feedwater heater and one closed feedwater heater. Superheated steam enters the turbine with a mass flow rate of 120 kg/s at 16 MPa and 560°C (State 1). Some fraction of the steam is extracted at 40 bar (State 2) and is supplied to the closed feedwater heater. The remaining steam expands to a pressure of 3 bar (State 3), another fraction is extracted at this pressure, and is supplied to...

  • Problem 3 A supercritical steam power plant has a high pressure of 30.0MPa and an exit...

    Problem 3 A supercritical steam power plant has a high pressure of 30.0MPa and an exit condenser temperature of 50°C. The maximum temperature in the boiler is 1000°C. There is one open feedwater heater receiving extraction from the turbine at IMPa, and saturated liquid exits the feedwater heater. The isentropic efficiency of the turbine during both sections of expansion is 88.5%. The turbine produces 25MW of power. Assume both pumps are isentropic. Page 2 of 3 30MPa 1000 Turbine Boiler...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT