Question

The cantilever beam shown is subjected to a concentrated load of P = 34500 lb. The cross-sectional dimensions and the moment

0 0
Add a comment Improve this question Transcribed image text
Answer #1

solutes :- Moment de Investa Rz=375 iny Fuut moment to area at passt SOM luunoh 4.533 tely 9, 25-1124 Isu in N 24 O2 TV Qkz {

Add a comment
Know the answer?
Add Answer to:
The cantilever beam shown is subjected to a concentrated load of P = 34500 lb. The...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The cantilever beam shown is subjected to a concentrated load of P = 46200 lb. The...

    The cantilever beam shown is subjected to a concentrated load of P = 46200 lb. The cross-sectional dimensions and the moment of inertia of the W16x40 wide-flange shape are: d = 16.0 in. tw = 0.305 in. bf = 7.00 in. tf = 0.505 in. Iz = 518 in.4 Compute the value of the shear stress at point K, located at yK = 2.4 in. above the centroidal axis. by P y T tw K Lyk Z d x Ун...

  • The cantilever beam is subjected to a concentrated load of P = 29 kips. The cross-sectional dimen...

    The cantilever beam is subjected to a concentrated load of P = 29 kips. The cross-sectional dimensions of the wide-flange shape are shown in the second figure. Assume yH=3.4 in., yK=1.6 in., d=10.6 in., tw=0.323 in., tf=0.507 in., bf=6.12 in. Determine: The cantilever beam is subjected to a concentrated load of P 29 kips. The cross-sectional dimensions of the wide-flange shape are shown in the second figure. Assume y,-3.4 in., Ук_ 1.6 in., d-10.6 in., t,-0.323 in., tf-0.507 in., bf-6.12...

  • The cantilever beam is subjected to a concentrated load of P = 52 kips. The cross-sectional...

    The cantilever beam is subjected to a concentrated load of P = 52 kips. The cross-sectional dimensions of the wide-flange shape are shown in the second figure. Assume yH = 3.2 in., yK = 1.8 in., d = 10.8 in., tw = 0.354 in., tf = 0.414 in., bf = 6.62 in. Determine: (a) the shear stress τH at point H, which is located 3.2 in. below the centroid of the wide-flange shape. (b) the maximum horizontal shear stress τmax...

  • The cantilever beam is subjected to a concentrated load of P = 35 kips. The cross-sectional...

    The cantilever beam is subjected to a concentrated load of P = 35 kips. The cross-sectional dimensions of the wide-flange shape are shown in the second figure. Assume yH = 4.6 in., ?? 1.8 in, d = 14.6 in., tw= 0.307 in., tf= 0.331 in., br= 7.55 in. Determine: (a) the shear stress tH at point H, which is located 4.6 in. below the centroid of the wide-flange shape. (b) the maximum horizontal shear stress Tmax in the wide-flange shape...

  • The cantilever beam shown in the figure is subjected to a concentrated load at point B....

    The cantilever beam shown in the figure is subjected to a concentrated load at point B. The stresses acting at point H on the beam are to be determined. H Cross section For this analysis, use the following values: Beam and Load. a = 1.75 m b=0.30 m @= 60 degrees P = 25 KN Cross-sectional Dimensions d=250 mm bp = 125 mm ty=7 mm tw = 7 mm C= 30 mm (Note: The load P applied at Bacts in...

  • The cantilever beam shown in the figure is subjected to a concentrated load at point B....

    The cantilever beam shown in the figure is subjected to a concentrated load at point B. The stresses acting at point Hon the beam are to be determined Ques! Text- Quest Text Ent T Quest Text End Cross section Viewir Text-Ent For this analysis, use the following values Beam and Load. Questi Muitstep a. 1.75 m b-0.30 m 0.63 degrees P.49 KN Questid Text Entry Questio Text Entry Cross-sectional Dimensions d - 275 mm by - 150 mm - 13...

  • The flanged member shown below is subjected to an internal axial force of P = 6500...

    The flanged member shown below is subjected to an internal axial force of P = 6500 lb, an internal shear force of V = 4500 lb, and an internal bending moment of M = 19200 lb-ft, acting in the directions shown. d M Iw y HI a y Ilk thu The dimensions of the cross section are: bf = 8.0 in. tp = 0.61 in. d = 11.0 in. tw = 0.38 in. The cross-sectional area of the flanged shape...

  • 'BACK STANDARD VTEW PRİNTER VERSİON P9.029 G0 Multipart Part 1 The cantilever beam shown is subjected to a concen...

    'BACK STANDARD VTEW PRİNTER VERSİON P9.029 G0 Multipart Part 1 The cantilever beam shown is subjected to a concentrated load of P- 125 kN. The cross-sectional dimensions of the t ectangular tube shape are shewn, where b- 150 mm, d 250 mm -8 mm, and 60 mm. Determine (a) the stear stress at point K, located d- b) the maximum horizontal shear stress in the rectangular tube shape. which s loceted d - 60 mm below the cent of the...

  • (a) A cantilever beam shown in Figure 6 is subjected to a concentrated load P. Deflection...

    (a) A cantilever beam shown in Figure 6 is subjected to a concentrated load P. Deflection of the beam at each point can be defined by the following equations: 6EI Pa 6EI F3x-a) for axx<l The following MATLAB code calculates and plots the deflection diagram for a beam with 1-4 m, d1 = 3 m, b = 1 m,E>210 x 10, Pa, 1 = 285 x 10-6 m4 and P = 20 kN. Find at least FOUR errors in the...

  • P9.007 (GO Tutorial) A 6.8 m long simply supported wood beam carries a uniformly distributed load...

    P9.007 (GO Tutorial) A 6.8 m long simply supported wood beam carries a uniformly distributed load of 10.6 kN/m, as shown in Figure A. The cross-sectional dimensions of the beam as shown in Figure B are b = 180 mm, d-460 mm, ун-92 mm, and VK-1 44 mm. Section a-a is located at x-1.3 m from B (a) At section a-a, determine the magnitude of the shear stress in the beam at point H. (b) At section a-a, determine the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT