Question

Shies Paragraph HW 2-ODE Application Part Al Mass spring damper system as represented in the figure. If the block has a mass

.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Correspoding en is Consider the FBD diagram of the mass bao pito of Thes (kom edo kube porno PITO, you m & Cinestial force) a

root We we can write the also for -87453 as oftro -1,0718 and -14,93 Corresponding soution is gp x = çe 1,0718 C 14,931 tae W

towo nortube odlo Case-ii ED 5 Sin Cartb) To or ular e mele Consider waar 19) lopotull Role Cascaltb) 2 @sincastb) Re Yp sinc

Above image is the procedure to solve whenthere is sine or cosine term.

dh xuss eof sine kleal 0,25x-1 + 40+4 Up = sine 3.75 +40 gp= sine (3.75-4D) (3.75 +4D) (3,75-4D) - 3.75 sinx - 4D(sine) B (3,

B = 4.14 m/s of for the please give thumbs up hard work. If you are not satisfied with the answer please comment before givin

Add a comment
Know the answer?
Add Answer to:
. Shies Paragraph HW 2-ODE Application Part Al Mass spring damper system as represented in the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4 HW_2nd ODE Application Part A) Mass spring damper system as represented in the figure. If...

    4 HW_2nd ODE Application Part A) Mass spring damper system as represented in the figure. If the block has a mass of 0.25 (kg) started vibrated freely from rest at the equilibrium position, the spring is a massless with a stiffness of 4 (N/m) and the damping coefficient C (Ns/m) such that c is less than 4 Ns/m. Find all possible equations of motion for the block. k 772 TH Part B) If a two DC motors applied an external...

  • Please write legibly Consider an ideal mass-spring-damper system similar to Figure 3.2. Find the damping coefficient of the system if a mass of 380 g is used in combination with a spring with stif...

    Please write legibly Consider an ideal mass-spring-damper system similar to Figure 3.2. Find the damping coefficient of the system if a mass of 380 g is used in combination with a spring with stiffness k = 17 N/m and a period of 0.945 s. If the system is released from rest 5 cm from it's equilibrium point at to = 0 s, find the trajectory of the position of the mass-spring-damper from it's release until t 3s Figure 3.2: Mass-spring-damper...

  • Problem 1 (Harmonic Oscillators) A mass-damper-spring system is a simple harmonic oscillator whose dynamics is governed...

    Problem 1 (Harmonic Oscillators) A mass-damper-spring system is a simple harmonic oscillator whose dynamics is governed by the equation of motion where m is the mass, c is the damping coefficient of the damper, k is the stiffness of the spring, F is the net force applied on the mass, and x is the displacement of the mass from its equilibrium point. In this problem, we focus on a mass-damper-spring system with m = 1 kg, c-4 kg/s, k-3 N/m,...

  • 3. The motion of a 1DOF mass-spring-damper system (see Figure 1) is modeled by the following seco...

    3. The motion of a 1DOF mass-spring-damper system (see Figure 1) is modeled by the following second order linear ODE: dx,2 dt n dt2 (0) C dt where is the damping ratio an wn is the natural frequency, both related to k, b, and m (the spring constant, damping coefficient, and mass, respectively) (a) Use the forward difference approximations of (b) Using Δt andd to obtain a finite difference formula for x(t+ 2Δ) (like we did in class for the...

  • Consider a mass-spring-damper system whose motion is described by the following system of differe...

    Consider a mass-spring-damper system whose motion is described by the following system of differentiat equations [c1(f-k)+k,(f-х)-c2(x-9), f=f(t), y:' y(t) with x=x( t), where the function fit) is the input displacement function (known), while xit) and yt) are the two generalized coordinates (both unknown) of the mass-spring-damper systenm. 1. Identify the type of equations (e.g. H/NH, ODE/PDE, L/NL, order, type of coefficients, etc.J. 2. Express this system of differential equations in matrix form, assume f 0 and then determine its general...

  • A second order mechanical system of a mass connected to a spring and a damper is subjected to a s...

    A second order mechanical system of a mass connected to a spring and a damper is subjected to a sinusoidal input force mi+ci +kx- Asin(ot) The mass is m-5 kg, the damping constant is c = 1 N-sec/m, the spring stiffness is 2 N/m, and the amplitude of the input force is A- 3 N. For this system give explicit numerical values for the damping factor un-damped natural frequency on a. and the A second order mechanical system of a...

  • 1. Given the spring-mass-damper system in the figure below T3 T1 T2 b2 b1 k3 (a) Find the equatio...

    1. Given the spring-mass-damper system in the figure below T3 T1 T2 b2 b1 k3 (a) Find the equations of motion for each of the masses 脳. Fi(s) (b) Assume F1 0 and find the transfer function (c) Assume Fs 0 and find the transfer function (d) Write the equations in matrix-vector form: M.ї + Bi + Kx-F where z is a 3 x 1 vector with the displacements r,2, r3 as components, M is the mass matrix, B is...

  • Please show work 3. Given a mass-spring-damper system, the 2kg mass is connected to two linear...

    Please show work 3. Given a mass-spring-damper system, the 2kg mass is connected to two linear springs with stiffness coefficients ki- 100 N/m and ki 150 N/m and a viscous damper with b 50 Ns/m. A constant force of SN is applied as shown. The effect of friction is negligible. ki m b 3.1 [2pts] Determine the equivalent stiffness of the springs. 3.2 [3pts] Draw the free-body diagram of the system. Define the generalized coordinate and label your forces and...

  • 2 with spring stiffness k 1000 N/m, Consider a mass-spring-damper system shown in Figure mass m...

    2 with spring stiffness k 1000 N/m, Consider a mass-spring-damper system shown in Figure mass m = 10 kg, and damping constant c-150 N-s/m. If the initial displacement is xo-o and the initial velocity is 10 m/s (1) Find the damping ratio. (2) Is the system underdamped or overdamped? Why? (3) Calculate the damped natural frequency (4) Determine the free vibration response of the system.

  • Spring mass damper system with forced response, the forced system given by the equation For damping...

    Spring mass damper system with forced response, the forced system given by the equation For damping factor:E-0.1 ; mass; m-| kg: stiffness of spring; k-100 Nm; f-| 00 N; ω Zun; initial condition: x (0)-2 cms; r(0) = 0. fsincot Task Marks 1. Write down the reduced equation into 2first orderns Hand written equations differential equations 2. Rearrange equation (1) with the following generalized equation 250, x+osinor calculations 3. Calculate the value of c calculations Hand calculations 4. Using the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT