Question

2) The force that a magnetic field exerts on a charged particle is given by Ę = qö xĒ. A particle with mass m= 2.0x108 kg and

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a) Cartesian expression for the magnetic field vector: P = (109) 600ê in Tesla 1 x (b) = 452 x 103 m/s Angle between wand 3 i(d) Magnitude of the force, F = 160.06)2 + 02+02 0.06 N (e) Force, F = que sink(+9,8)) 29 = 10) √ - 4x103)² + (4x10²)2 5,66x

Add a comment
Know the answer?
Add Answer to:
2) The force that a magnetic field exerts on a charged particle is given by Ę...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2) The force that a magnetic field exerts on a charged particle is given by F...

    2) The force that a magnetic field exerts on a charged particle is given by F = qö x B. A particle with mass m = 2.0x10 kg and charge q - +2.5x10°C has an initial speed of v = 4/2 x 103 m/s (in the x- y plane). The magnetic field vector and velocity vector are 5 and 0, respectively are displayed on the coordinate axis below. The angle between the vectors is 135 degrees. Use unit vector notation...

  • 27A - Magnetic Fields and Forces 1) The force that a magnetic field exerts on a...

    27A - Magnetic Fields and Forces 1) The force that a magnetic field exerts on a charged particle is given by È = qö x B. Assume charge q=+1.5 nC, B = 0.30 T and 0 = 25 m/s. The directions of the magnetic field vector and velocity vector are ] and , respectively are displayed on the coordinate axis below. The angle between the vectors is 90, degrees. Use unit vector notation when describing the vectors. z (0, 0,...

  • The force on a charged particle moving in a magnetic field can be computed as the...

    The force on a charged particle moving in a magnetic field can be computed as the vector sum of the forces due to each separate component of the magnetic field. As an example, a particle with charge q is moving with speed v in the? y-direction. It is moving in a uniform magnetic field Part A What is the x-component of the force F?  exerted on the particle by the magnetic field? Part B What is the y-component of the force...

  • A charged particle moves with velocity 1.5 km/s making angle 50° with the external magnetic field...

    A charged particle moves with velocity 1.5 km/s making angle 50° with the external magnetic field of magnitude of 0.6 T (see figure below). The field exerts the 3.5 N force on the charge. The direction of the force is out of the page/screen. What is the magnitude and sign of the charge? 1. (15 points) A charged particle moves with velocity 1.5 km/s making angle 50° with the external magnetic field of magnitude of 0.6 T (sce figure below)....

  • A charged particle moves with velocity 1.5 km/s making angle 50° with the external magnetic field...

    A charged particle moves with velocity 1.5 km/s making angle 50° with the external magnetic field of magnitude of 0.6 T (see figure below). The field exerts the 3.5 N force on the charge. The direction of the force is out of the page/screen. What is the magnitude and sign of the charge? The magnetic force would be zero if: A. v was parallel to the field; B. v was directed out of page; C. v was directed into the...

  • A charged particle moves with velocity 1.5 km/s making angle 50° with the external magnetic field...

    A charged particle moves with velocity 1.5 km/s making angle 50° with the external magnetic field of magnitude of 0.6 T (see figure below). The field exerts the 3.5 N force on the charge. The direction of the force is out of the page/screen. What is the magnitude and sign of the charge? 50° B The magnetic force would be zero if: A. v was parallel to the field; B. v was directed out of page; C. v was directed...

  • A magnetic field exerts a force on a charged particle: a. never b. if the particle...

    A magnetic field exerts a force on a charged particle: a. never b. if the particle is moving across the field lines c. if the particle is moving along the field lines c. if the particle is at rest.

  • A charged particle moves with velocity 5 km/s making angle 50° with the external magnetic field...

    A charged particle moves with velocity 5 km/s making angle 50° with the external magnetic field of magnitude of 0.6 T (see figure below). The field exerts the 3.5 N force on the charge. The direction of the force is out of the page/screen. What is the magnitude and sign of the charge? The magnetic force would be zero if: v was parallel to the field; (a) v was directed out of page;(b)v was directed into the page(c)v=0;(d) A and...

  • Problem 1a: Velocity Selector: Show that with the right ratio of electric to magnetic field strength...

    Problem 1a: Velocity Selector: Show that with the right ratio of electric to magnetic field strength a particle of velocity v will proceed through both fields in a straight line at constant speed (hint: you will need an equation containing v. Also: what does the straight line at constant speed give you?). Assume that the angle of the velocity vector relative to the magnetic field vector is 90 degrees. (15 points) b: Show mathematically that the charge magnitude and sign...

  • 3) A charged particle is moving with velocity of V in a magnetic field of B,...

    3) A charged particle is moving with velocity of V in a magnetic field of B, which one of the followings is correct: A) The direction of force F on the charge is parallel to magnetic field B B) The direction of force F on the charge is parallel to velocity direction V C) The force is maximized when velocity direction and magnetic field are parallel D) The force F is perpendicular (normal) to both velocity V and magnetic field...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT