Question

DETAILS ZILLDIFFEQMODAP11 5.R.012, MY NOTES ASK YOUR TEACHER Amass weighing 12 pounds stretches a spring 2 feet. The mass is

0 0
Add a comment Improve this question Transcribed image text
Answer #1

7:55 LTE ** ull > 0 mass, W =we 12 32 Costand opny 6 z 12 Luup of wb t tue ka=0 ẽ t160=0 کردن ginen 2010) 8 x (0)=-4 gooni T

Add a comment
Know the answer?
Add Answer to:
DETAILS ZILLDIFFEQMODAP11 5.R.012, MY NOTES ASK YOUR TEACHER Amass weighing 12 pounds stretches a spring 2...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass weighing 12 pounds stretches a spring 2 feet. The mass is initially released from...

    A mass weighing 12 pounds stretches a spring 2 feet. The mass is initially released from a point 1 foot below the equilibrium position with an upward velocity of 4 ft/s. (Use g 32 ft/s for the acceleration due to gravity.) (a) Find the equation of motion x(t) (b) what are the amplitude, period, and frequency of the simple harmonic motion? amplitude1.118 ft period frequency cycles/s (c) At what times does the mass return to the point 1 foot below...

  • 6. 2/8 polnts 1 Previous Answers My Notes Ask Your Teach A mass weighing 12 pounds stretches a sp...

    6. 2/8 polnts 1 Previous Answers My Notes Ask Your Teach A mass weighing 12 pounds stretches a spring 6 inches. The mass is initally released from rest from a point 2 nches below the equilibrium position. g 32 ft/s for the acceleration due to gravity.) below the equilibrium position. (Use (a) Find the position of the mass at the times t-π/12, t/8, π/6, T/4, and 9,32 s. 12 t s ft ft 5 ft 97I ft (b) What is...

  • 1. A force of 2 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds...

    1. A force of 2 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds is attached to the spring, and the system is then immersed in a medium that offers a damping force that is equal to 0.4 times the instantaneous velocity. (a) Find the equation of motion if the mass is initially released from rest from a point 1 foot above the equilibrium position. (Use the convention that displacements measured below the equilibrium position are positive.) (b)...

  • A force of 2 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds is...

    A force of 2 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds is attached to the spring, and the system is then immersed in a medium that offers a damping force numerically equal to 0.8 times the instantaneous velocity. (a) Find the equation of motion if the mass is initially released from rest from a point 1 foot above the equilibrium position x(t) ft (b) Express the equation of motion in the form x(t) = Ae-At sin...

  • A force of 4 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds is...

    A force of 4 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds is attached to the spring, and the system is then immersed in a medium that offers a damping force numerically equal to 0.4 times the instantaneous velocity (a) Find the equation of motion if the mass is initially released from rest from a point 1 foot above the equilibrium position. x(t) = ft (b) Express the equation of motion in the form x(t) = Aet...

  • A mass weighing 8 pounds stretches a spring 1 foot. The system is then immersed in...

    A mass weighing 8 pounds stretches a spring 1 foot. The system is then immersed in a medium that offers a damping force numerically equal to 3 times the instantaneous velocity. The mass is initially released from the equilibrium position with a downward velocity of 4 ft/s. Find the spring constant ?, mass ? and the damping constant ? Find ? and ?, and the roots of the characteristic equation: Write the initial conditions: Estimate the time when the mass...

  • (7 points) 13. A mass weighing 10 pounds stretches a spring 3 inches. The mass is...

    (7 points) 13. A mass weighing 10 pounds stretches a spring 3 inches. The mass is removed and replaced with a mass weighing 51.2 pounds, which is initially released from a point 4 inches above the equilibrium position with an downward velocity of ft/s. Find the equation of motion, ä(t). (g = 32 ft/s2) (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is submerged in a medium which offers a damping force that...

  • A mass weighing 4 pounds stretches a spring 6 inches. At time t = 0, the...

    A mass weighing 4 pounds stretches a spring 6 inches. At time t = 0, the weight is then struck to set it into motion with an initial velocity of 2 ft/sec, directed downward. Determine the equations of motion for the position and the velocity of the weight. Find the amplitude, period, and frequency of the position (displacement). A 4-lb weight stretches a spring 1 ft. If the weight moves in a medium where the magnitude of the damping force...

  • (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is...

    (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is submerged in a medium which offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of 8 ft/s. Find the equation of motion, ä(t). What type of damped motion is this system?

  • A mass weighting 3 lb stretches a spring 3 in. if the mass is pushed upward,...

    A mass weighting 3 lb stretches a spring 3 in. if the mass is pushed upward, contracting the spring a distance of 1 in, and then set in motion with a downward velocity of 2 ft/s, and if there is no damping. (1) determine the position u(t) of the mass at any time t. (2) Determine the frequency, period, amplitude, and phase of the motion. (3) Plot u(t), and find when does the mass first return to its equilibrium position?...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT