Question

(1 point) Consider the linear system (-1: 1) y. a. Find the eigenvalues and eigenvectors for the coefficient matrix. 1 v1 =

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution:

Given system is

\vec{y}\ '=\begin{bmatrix} 6& 4\\ -12 & -8 \end{bmatrix}\vec{y}

compare it with

y = Ay

we have

A=\begin{bmatrix} 6 &4 \\ -12 & -8 \end{bmatrix}

Now eigen values are given by

A - XI = 0

6-3 —12 4 -8-3 =0

\Rightarrow (6-\lambda)(-8-\lambda)+48=0

\Rightarrow -48-6\lambda+8\lambda+\lambda^2+48=0

\Rightarrow \lambda^2+2\lambda=0

\Rightarrow \lambda(\lambda+2)=0

\Rightarrow \lambda=-2,0

Now, eigen vector v_1 corresponding to \lambda_1=-2 is given by

[A+2I]v_1=0

\Rightarrow \begin{bmatrix} 8 & 4\\ -12 &-6 \end{bmatrix}\begin{bmatrix} a\\ b \end{bmatrix}=\begin{bmatrix} 0\\ 0 \end{bmatrix}

applying R_1\to \frac{1}{4}R_1

\Rightarrow \begin{bmatrix} 2 & 1\\ -12 &-6 \end{bmatrix}\begin{bmatrix} a\\ b \end{bmatrix}=\begin{bmatrix} 0\\ 0 \end{bmatrix}

applying R_2\to R_2+6R_1

\Rightarrow \begin{bmatrix} 2 & 1\\ 0 &0 \end{bmatrix}\begin{bmatrix} a\\ b \end{bmatrix}=\begin{bmatrix} 0\\ 0 \end{bmatrix}

\Rightarrow 2a+b=0

\Rightarrow b=-2a

by choosing a=1 , we get

v_1=\begin{bmatrix} 1\\-2 \end{bmatrix}

Thus,

{\color{Red} \lambda_1=-2,\ v_1=\begin{bmatrix} 1\\-2 \end{bmatrix}}

Now, eigen vector v_2 corresponding to \lambda_2=0 is given by

[A]v_2=0

\Rightarrow \begin{bmatrix} 6 & 4\\ -12 &-8 \end{bmatrix}\begin{bmatrix} a\\ b \end{bmatrix}=\begin{bmatrix} 0\\ 0 \end{bmatrix}

applying R_2\to R_2+2R_1

\Rightarrow \begin{bmatrix} 6 & 4\\ 0 &0 \end{bmatrix}\begin{bmatrix} a\\ b \end{bmatrix}=\begin{bmatrix} 0\\ 0 \end{bmatrix}

\Rightarrow 6a+4b=0

\Rightarrow b=-\frac{6}{4}a

\Rightarrow b=-\frac{3}{2}a

by choosing a=2 , we get

v_2=\begin{bmatrix} 2\\-3 \end{bmatrix}

Thus,

{\color{Red} \lambda_2=0,\ v_2=\begin{bmatrix} 2\\-3 \end{bmatrix}}

Now, the solutions are given by

y_1(t)=v_1e^{\lambda_1t}\ \ and \ \ y_2(t)=v_2e^{\lambda_2t}

\Rightarrow y_1(t)=\begin{bmatrix} 1\\-2 \end{bmatrix}e^{-2t}\ \ and \ \ y_2(t)=\begin{bmatrix} 2\\-3 \end{bmatrix}

{\color{Red} \Rightarrow y_1(t)=\begin{bmatrix} e^{-2t}\\-2e^{-2t} \end{bmatrix}\ \ and \ \ y_2(t)=\begin{bmatrix} 2\\-3 \end{bmatrix}}

which is the required solution.

Also

\Rightarrow \begin{vmatrix} e^{-2t} &2 \\ -2e^{-2t} & -3 \end{vmatrix}=-3e^{-2t}+4e^{-2t}=e^{-2t}\neq 0

Thus, solutions are linearly independent.

This complete the solution.

Add a comment
Know the answer?
Add Answer to:
(1 point) Consider the linear system "(-1: 1) y. a. Find the eigenvalues and eigenvectors for...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT