Question

Problem 5. (1 point) Consider the linear system a. Find the eigenvalues and eigenvectors for the coefficient matrix. and iz =
Problem 6. (1 point) Find the most general real-valued solution to the linear system of differential equations = x, = -
0 0
Add a comment Improve this question Transcribed image text
Answer #1

(a) We have, the eigenvectors of the coefficient matrix are given by the roots of the characteristic equation, so

\small \det (A-xI)= 0 \\ \\ \Rightarrow \begin{vmatrix} -3-x & -2\\ 5 & 3-x \end{vmatrix}=0 \Rightarrow x^2+1=0 \Rightarrow x=i, -i

Thus, the eigenvalues of the coefficient matrix are \small \lambda=i,-i

An eigenvector corresponding to the eigenvalue i is given by

\small \begin{bmatrix}-3+i\\ 5\end{bmatrix}

and, an eigenvector corresponding to the eigenvalue -i is

\small \begin{bmatrix}-3-i\\ 5\end{bmatrix}

So, the answer to (a) is

\small \lambda_1=i,\;\vec{v}_1=\begin{bmatrix}-3+i\\ 5\end{bmatrix},\text{ and }\lambda_2=-i,\; \vec{v}_2=\begin{bmatrix}-3-i\\ 5\end{bmatrix}

(b) Now, we have

\small \mathrm{For\:two\:distinct\:complex\:eigenvalues}\:\lambda_1\ne \lambda_2,\:\mathrm{where\:}\lambda_1=\alpha +i\beta ,\:\lambda_2=\alpha -i\beta

\small \mathrm{and\:corresponding\:eigenvectors\;}\eta_1\ne \eta_2,\:\mathrm{where}\:\eta_1=u+iv,\:\eta_2=u-iv

\small \mathrm{the\:general\:solution\:takes\:the\:form:}

\small x=c_1e^{\alpha t}\left(\cos \left(\beta t\right)u-\sin \left(\beta t\right)v\right)+c_2e^{\alpha t}\left(\cos \left(\beta t\right)v+\sin \left(\beta t\right)u\right)

Now, in our case

\small \lambda=0\pm i\Rightarrow \alpha=0;\; \beta=1

and

\small \eta=\begin{bmatrix}-3\pm i\\ 5\end{bmatrix}=\begin{bmatrix}-3\\ 5\end{bmatrix}\pm i\begin{bmatrix}1\\ 0\end{bmatrix};\;u=\begin{bmatrix}-3\\ 5\end{bmatrix},\; v=\begin{bmatrix}1\\ 0\end{bmatrix}

So, the general solution of the given system is

\small \vec y=c_1e^0\left(\cos \left(t\right)\begin{bmatrix}-3\\ 5\end{bmatrix}-\sin \left(t\right)\begin{bmatrix}1\\ 0\end{bmatrix}\right)+c_2e^0\left(\cos \left(t\right)\begin{bmatrix}1\\ 0\end{bmatrix}+\sin \left(t\right)\begin{bmatrix}-3\\ 5\end{bmatrix}\right)

Simplifying we get

\small \vec y=c_1\left(\cos \left(t\right)\begin{bmatrix}-3\\ 5\end{bmatrix}-\sin \left(t\right)\begin{bmatrix}1\\ 0\end{bmatrix}\right)+c_2\left(\cos \left(t\right)\begin{bmatrix}1\\ 0\end{bmatrix}+\sin \left(t\right)\begin{bmatrix}-3\\ 5\end{bmatrix}\right)

Now, we have the initial condition,

\small \vec y(0)=\begin{bmatrix} -7\\ 10 \end{bmatrix}

Applying this initial condition we get

\small c_1=2,\;c_2=-1

so our particular solution is

\small \vec y=2\left(\cos \left(t\right)\begin{bmatrix}-3\\ 5\end{bmatrix}-\sin \left(t\right)\begin{bmatrix}1\\ 0\end{bmatrix}\right)-\left(\cos \left(t\right)\begin{bmatrix}1\\ 0\end{bmatrix}+\sin \left(t\right)\begin{bmatrix}-3\\ 5\end{bmatrix}\right)

Simplifying further we have

\small \vec y=\cos (t) \begin{bmatrix} -7\\ 10 \end{bmatrix}+\sin (t) \begin{bmatrix} 1\\ -5 \end{bmatrix}

Thus, writing down the functions separately, the solution to (b) is

\small y_1(t)=-7\cos(t)+\sin(t)

\small y_2(t)=10\cos(t)-5\sin(t)

Add a comment
Know the answer?
Add Answer to:
Problem 5. (1 point) Consider the linear system a. Find the eigenvalues and eigenvectors for the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT