Question

Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this p

i need
The entropy change of the refrigerant
and also the amount of heat transfered
0 0
Add a comment Improve this question Transcribed image text
Answer #1

S2 ild Si= 0.451902 Kglig k Sz = 0.50974 kJ 1 lg k T So.u=a S M. entropy change as= (52-51) 30.01 (0.50974-0.451902) = 0.0578

Add a comment
Know the answer?
Add Answer to:
i need The entropy change of the refrigerant and also the amount of heat transfered Required...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to...

    NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part A 1-m3 rigid tank contains refrigerant-134a initially at 200 kPa and 40 percent quality. Heat is transferred now to the refrigerant from a source at 35°C until the pressure rises to 400 kPa. Determine the entropy change of the refrigerant. Use the tables for R-134a. (You must provide an answer before moving on to the next part.) The entropy change...

  • Saved Required information NOTE: This is a multi-part question. Once an answer is submitted, you will...

    Saved Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A 0.8-mº rigid tank contains refrigerant-134a initially at 200 kPa and 40 percent quality. Heat is transferred now to refrigerant from a source at 35°C until the pressure rises to 400 kPa. Determine total entropy change for this process. The total entropy change for this process is ПkJ/к.

  • Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be...

    Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A 0.9-m3 rigid tank contains refrigerant-134a initially at 160 kPa and 40 percent quality. Heat is now transferred to the refrigerant until the pressure reaches 600 kPa. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the amount of heat transferred. (Please provide an answer before...

  • A 0.7-m3 rigid tank contains refrigerant-134a initially at 160 kPa and 40 percent quality. Heat is...

    A 0.7-m3 rigid tank contains refrigerant-134a initially at 160 kPa and 40 percent quality. Heat is now transferred to the refrigerant until the pressure reaches 600 kPa. Determine the amount of heat transferred.

  • Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be...

    Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Refrigerant-134a enters the coils of the evaporator of a refrigeration system as a saturated liquid-vapor mixture at a pressure of 140 kPa. The refrigerant absorbs 175 kJ of heat from the cooled space, which is maintained at -10°C, and leaves as saturated vapor at the same pressure. Determine the entropy change of the refrigerant. Use the tables for...

  • 3. D. Since the pressure of the system finally increases beyond the initial saturation pressure, ...

    3. D. Since the pressure of the system finally increases beyond the initial saturation pressure, the tank is rigid and the mass of the refrigerant does not change, what does this imply for the refrigerant? A) Finally, the refrigerant is in the saturated vapor state. B) Finally, the refrigerant is in the compressed liquid state. C) Finally, the refrigerant is in the superheated vapor state. D) Finally, the refrigerant maintains the same specific volume but at a higher pressure. 3....

  • NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to...

    NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Refrigerant-134a enters an adiabatic compressor as saturated vapor at 100 kPa at a rate of 1.3 m3/min and exits at 1-MPa pressure. The isentropic efficiency of the compressor is 87 percent. 1 MPa R-134a Compressor 100 kPa sat. vapor Determine the temperature of the refrigerant at the exit of the compressor. Use the tables for R-134a. (You must provide an...

  • Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be...

    Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part A 1.5-m3 rigid tank contains hydrogen at 250 kPa and 550 K. The gas is now cooled until its temperature drops to 350 K. The gas constant of hydrogen is R = 4.124 kPa-m3/kg-K (Table A-1). The constant-volume specific heat of hydrogen at the average temperature of 450 K is Cv, avg= 10.377 kJ/kg-K. Determine the final pressure...

  • Required Information NOTE: This is a multi-part question. Once an answer is submitted, you will be...

    Required Information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to retum to this part. Refrigerant-134a enters an adiabatic compressor as saturated vapor at 100 kPa at a rate of 0.9 m/min and exits at 1MPa pressure. The Isentropic efficiency of the compressor is 87 percent. 1 MPа R-134a Compressor 100 kPa sal vapor Determine the temperature of the refrigerant at the exit of the compressor. Use the tables for R-134a. (You must...

  • A 17-ft3 rigid tank initially contains saturated refrigerant-134a vapor at 160 psia. As a result of...

    A 17-ft3 rigid tank initially contains saturated refrigerant-134a vapor at 160 psia. As a result of heat transfer from the refrigerant, the pressure drops to 50 psia. a.) Determine the final temperature. Use data from refrigerant tables. (Please provide an answer before moving on to the next part.) b.) Determine the amount of refrigerant that has condensed.(lbm) (Please provide an answer before moving on to the next part.) c.) Determine the heat transfer. (Btu)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT