Question

Problem 3 Let L:R4 + R3 be given by L - (C)- [. (3x1 – 422 + 11x4) (1522 + 9x3 – 2124) a) [4 pts] Show that L is a linear tra

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution:

Note: Given transformation is not valid

it should be defined as

L:R^4\to R^3

is defined by

01 12 L = 3.01 – 4.02 + 1104 15.22 +9.73 – 21.04 -6.01 +9:22 + 4.13 - 5.04 13 14

a). Let

\begin{bmatrix} x_1\\x_2 \\x_3\\x_4 \end{bmatrix} ,\begin{bmatrix} y_1\\y_2 \\y_3\\y_4 \end{bmatrix} \in R^4 \ \ \ \& \ \ \alpha,\beta\in R

we have

L\left (\alpha\begin{bmatrix} x_1\\x_2 \\x_3\\x_4 \end{bmatrix} +\beta \begin{bmatrix} y_1\\y_2 \\y_3\\y_4 \end{bmatrix} \right )=L\left ( \begin{bmatrix} \alpha x_1+\beta y_1\\ \alpha x_2+\beta y_2 \\ \alpha x_3+\beta y_3 \\ \alpha x_4+\beta y_4 \end{bmatrix} \right )

\Rightarrow L\left (\alpha\begin{bmatrix} x_1\\x_2 \\x_3\\x_4 \end{bmatrix} +\beta \begin{bmatrix} y_1\\y_2 \\y_3\\y_4 \end{bmatrix} \right )= \begin{bmatrix} 3(\alpha x_1+\beta y_1)-4(\alpha x_2+\beta y_2)+11(\alpha x_4+\beta y_4)\\15( \alpha x_2+\beta y_2)+9(\alpha x_3+\beta y_3)-21(\alpha x_4+\beta y_4) \\ -6(\alpha x_1+\beta y_1)+9( \alpha x_2+\beta y_2)+4(\alpha x_3+\beta y_3) -5 (\alpha x_4+\beta y_4) \end{bmatrix}

\Rightarrow L\left (\alpha\begin{bmatrix} x_1\\x_2 \\x_3\\x_4 \end{bmatrix} +\beta \begin{bmatrix} y_1\\y_2 \\y_3\\y_4 \end{bmatrix} \right )= \begin{bmatrix} 3\alpha x_1+3\beta y_1-4\alpha x_2-4\beta y_2+11\alpha x_4+11\beta y_4)\\15 \alpha x_2+15\beta y_2+9\alpha x_3+9\beta y_3-21\alpha x_4-21\beta y_4 \\ -6\alpha x_1-6\beta y_1)+9 \alpha x_2+9\beta y_2+4\alpha x_3+4\beta y_3 -5 \alpha x_4-5\beta y_4 \end{bmatrix}

\Rightarrow L\left (\alpha\begin{bmatrix} x_1\\x_2 \\x_3\\x_4 \end{bmatrix} +\beta \begin{bmatrix} y_1\\y_2 \\y_3\\y_4 \end{bmatrix} \right )= \begin{bmatrix} \alpha(3x_1-4x_2+11x_4)+\beta(3y_1-4y_2+11y_4)\\ \alpha(15x_2+9x_3-21x_4)+\beta(15y_2+9y_3-21y_4) \\\alpha(-6x_1+9x_2+4x_3-5x_4)+\beta(-6y_1+9y_2+4y_3-5y_4) \end{bmatrix}

\Rightarrow L\left (\alpha\begin{bmatrix} x_1\\x_2 \\x_3\\x_4 \end{bmatrix} +\beta \begin{bmatrix} y_1\\y_2 \\y_3\\y_4 \end{bmatrix} \right )= \alpha \begin{bmatrix} 3x_1-4x_2+11x_4 \\ 15x_2+9x_3-21x_4 \\-6x_1+9x_2+4x_3-5x_4 \end{bmatrix}+\beta\begin{bmatrix} 3y_1-4y_2+11y_4\\ 15y_2+9y_3-21y_4 \\ -6y_1+9y_2+4y_3-5y_4 \end{bmatrix}

\Rightarrow L\left (\alpha\begin{bmatrix} x_1\\x_2 \\x_3\\x_4 \end{bmatrix} +\beta \begin{bmatrix} y_1\\y_2 \\y_3\\y_4 \end{bmatrix} \right )=\alpha L\left (\begin{bmatrix} x_1\\x_2 \\x_3\\x_4 \end{bmatrix} \right )+\beta L\left ( \begin{bmatrix} y_1\\y_2 \\y_3\\y_4 \end{bmatrix} \right )

Hence, L is a linear transformation.

Now, Let the standard basis for R^4 and R^3 are respectively

B_1=\left ( \begin{bmatrix} 1\\0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0\\1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0\\0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0\\0 \\ 0 \\ 1 \end{bmatrix} \right )

and

B_2=\left ( \begin{bmatrix} 1\\0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0\\1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0\\0 \\ 1 \end{bmatrix} \right )

Now,

L\left ( \begin{bmatrix} 1\\ 0 \\ 0 \\ 0 \end{bmatrix} \right )=\begin{bmatrix} 3\\ 0 \\ -6 \end{bmatrix}

L\left ( \begin{bmatrix} 0\\ 1 \\ 0 \\ 0 \end{bmatrix} \right )=\begin{bmatrix} -4\\ 15 \\ 9 \end{bmatrix}

L\left ( \begin{bmatrix} 0\\ 0 \\ 1 \\ 0 \end{bmatrix} \right )=\begin{bmatrix} 0\\ 9 \\ 4 \end{bmatrix}

L\left ( \begin{bmatrix} 0\\ 0 \\ 0 \\ 1 \end{bmatrix} \right )=\begin{bmatrix} 11\\ -21 \\ -5 \end{bmatrix}

Thus, matrix representation is

A=\begin{bmatrix} 3 & -4 &0 & 11\\ 0& 15& 9 & -21\\ -6& 9& 4 &-5 \end{bmatrix}

Which is the required matrix representation.

b).

Now, Kernel of L is given by

ker(L)=\left \{ X \in R^4: \ \ AX=0 \right \}

\Rightarrow ker(L)=\left \{ \begin{bmatrix} x_1\\x_2 \\ x_3 \\ x_4 \end{bmatrix}\in R^4: \ \ \begin{bmatrix} 3 & -4 &0 & 11\\ 0& 15& 9 & -21\\ -6& 9& 4 &-5 \end{bmatrix}\begin{bmatrix} x_1\\x_2 \\ x_3 \\ x_4 \end{bmatrix}=\begin{bmatrix} 0\\ 0 \\ 0 \\ 0 \end{bmatrix}\right\}

applying R_3\to R_3+2R_1

\Rightarrow ker(L)=\left \{ \begin{bmatrix} x_1\\x_2 \\ x_3 \\ x_4 \end{bmatrix}\in R^4: \ \ \begin{bmatrix} 3 & -4 &0 & 11\\ 0& 15& 9 & -21\\ 0& 1& 4 &17 \end{bmatrix}\begin{bmatrix} x_1\\x_2 \\ x_3 \\ x_4 \end{bmatrix}=\begin{bmatrix} 0\\ 0 \\ 0 \\ 0 \end{bmatrix}\right\}

applying R_2 \leftrightarrow R_3

\Rightarrow ker(L)=\left \{ \begin{bmatrix} x_1\\x_2 \\ x_3 \\ x_4 \end{bmatrix}\in R^4: \ \ \begin{bmatrix} 3 & -4 &0 & 11\\ 0& 1& 4 &17\\ 0& 15& 9 & -21 \end{bmatrix}\begin{bmatrix} x_1\\x_2 \\ x_3 \\ x_4 \end{bmatrix}=\begin{bmatrix} 0\\ 0 \\ 0 \\ 0 \end{bmatrix}\right\}

applying R_3\to R_3-15R_2

\Rightarrow ker(L)=\left \{ \begin{bmatrix} x_1\\x_2 \\ x_3 \\ x_4 \end{bmatrix}\in R^4: \ \ \begin{bmatrix} 3 & -4 &0 & 11\\ 0& 1& 4 &17\\ 0& 0& -51 & -276 \end{bmatrix}\begin{bmatrix} x_1\\x_2 \\ x_3 \\ x_4 \end{bmatrix}=\begin{bmatrix} 0\\ 0 \\ 0 \\ 0 \end{bmatrix}\right\}

\Rightarrow ker(L)=\left \{ \begin{bmatrix} x_1\\x_2 \\ x_3 \\ x_4 \end{bmatrix}\in R^4: \ \3x_1-4x_2+11x_4=0,x_2+4x_3+17x_4=0,51x_3+276x_4=0 \right\}\Rightarrow ker(L)=\left \{ \begin{bmatrix} x_1\\x_2 \\ x_3 \\ x_4 \end{bmatrix}\in R^4: \ \3x_1=4x_2-11x_4,x_2=-4x_3-17x_4,x_3=-\frac{276}{51}x_4 \right\}

\Rightarrow ker(L)=\left \{ \begin{bmatrix} \frac{129}{51}x_4\\\frac{237}{51}x_4 \\ -\frac{276}{51}x_4 \\ x_4 \end{bmatrix}: x_4\in R \right\}

\Rightarrow ker(L)=\left \{ \begin{bmatrix} \frac{129}{51}\\\frac{237}{51} \\ -\frac{276}{51} \\ 1 \end{bmatrix}x_4: x_4\in R \right\}

Thus, the basis for ker(L) is

basis [ker(L)]=\left \{ \begin{bmatrix} \frac{129}{51}\\\frac{237}{51} \\ -\frac{276}{51} \\ 1 \end{bmatrix} \right \}

c). we have

A=\begin{bmatrix} 3 & -4 &0 & 11\\ 0& 15& 9 & -21\\ -6& 9& 4 &-5 \end{bmatrix}

A^T=\begin{bmatrix} 3 & 0 & -6\\ -4 & 15 & 9\\ 0 & 9 & 4\\ 11 & -21 & -5 \end{bmatrix}

applying R_1\to \frac{1}{3}R_1

A^T=\begin{bmatrix} 1 & 0 & -2\\ -4 & 15 & 9\\ 0 & 9 & 4\\ 11 & -21 & -5 \end{bmatrix}

applying R_2\to R_2+ 4R_1,\ R_4\to R_4-11R_1

A^T=\begin{bmatrix} 1 & 0 & -2\\ 0 & 15 & 1\\ 0 & 9 & 4\\ 0 & -21 & 17 \end{bmatrix}

applying R_3\to R_3-\frac{9}{15}R_2, \ R_4\to R_4+\frac{21}{15}R_2

A^T=\begin{bmatrix} 1 & 0 & -2\\ 0 & 15 & 1\\ 0 & 0 & \frac{17}{5}\\ 0 & 0 & \frac{92}{5} \end{bmatrix}

applying R_4\to R_4-\frac{92}{17}R_3

A^T=\begin{bmatrix} 1 & 0 & -2\\ 0 & 15 & 1\\ 0 & 0 & \frac{17}{5}\\ 0 & 0 & 0 \end{bmatrix}

Thus, the basis for Im(L) is given by

basis[Im(L)]=\left \{ \begin{bmatrix} 1\\0 \\ -2 \end{bmatrix},\begin{bmatrix} 0\\ 15 \\ 1 \end{bmatrix},\begin{bmatrix} 0\\0 \\ \frac{17}{5} \end{bmatrix} \right \}

which is the required basis.

This complete the solution.

Add a comment
Know the answer?
Add Answer to:
Problem 3 Let L:R4 + R3 be given by L - (C)- [. (3x1 – 422...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 3 Let L: R4 → R3 be given by L (6)-1 (3:01 - 4.12 +...

    Problem 3 Let L: R4 → R3 be given by L (6)-1 (3:01 - 4.12 + 1104) (15.12 + 9.23 - 21:04) 6.01 +9.12 + 4.13 - 5.14) a) (4 pts] Show that L is a linear transformation, and find the matrix representation A of L with respect to the standard bases for R' and R3. b) [3 pts] Use part a) to find a basis for ker(L). c) [3 pts] Use part a) for find a basis for im(L).

  • Let T R3 R4 be the linear transformation defined by T(π1, Ο2, 73) - ( 3α1...

    Let T R3 R4 be the linear transformation defined by T(π1, Ο2, 73) - ( 3α1 -4 , X3, 12.x2 3.x3, 6x1-25x3, 10x2 + 10x3) (a) Determine the standard matrix representation of T (b) Find a basis for the image of T, Im(T), and determine dim(Im(T)) (c) Find a basis for the kernel of T, ker(T), and determine dim(ker(T))

  • Problem 24 : Let b b2 b3 ba E R4 be a fixed vector, b +...

    Problem 24 : Let b b2 b3 ba E R4 be a fixed vector, b + 0. Define L:R4 R by C1 12 L(x) = b. I, 2= ER4. 13 24 where bºx is the dot product of b and x in R4. (a) Show that L is a linear transformation. (b) Find the standard matrix representation of L. (c) Find a basis for and the dimension of Ker L. (d) Is L one-to one? Explain why. (e) Is L...

  • Tbi b2 Problem 24 : Let b e R4 be a fixed vector, b+0. b3 b4...

    Tbi b2 Problem 24 : Let b e R4 be a fixed vector, b+0. b3 b4 Define L:R4 → R by 11 12 L(x) = 6-2, x= ER 23 24 where b.x is the dot product of b and 2 in R4. (a) Show that L is a linear transformation. (b) Find the standard matrix representation of L. (c) Find a basis for and the dimension of Ker L. (d) Is L one-to one? Explain why. (e) Is L onto?...

  • 1. Find a matrix A such that L(x) = A ∗ x for all x ∈...

    1. Find a matrix A such that L(x) = A ∗ x for all x ∈ R³ .What is the relation between A and the matrix representation eLe of L with respect to the standard bases for R³and R∧4? 2. 3. Compute the matrix representative eLS of . Let L : R3 → R4 be the linear transformation given by L 22 23 [(3x1 – 2x2 – 7x3)] (5x1 – 3x3) (4x2 – 3x3) [(6x1 + 2x2 – 3x3) Let...

  • Let L: R3 --> R3 be defined by Only need c-e solved. 6, (24 points) Let...

    Let L: R3 --> R3 be defined by Only need c-e solved. 6, (24 points) Let L : R3 → R3 be defined by (a) Find A, the standard matrix representation of f (b) Let 0 -2 2. Check that倔,G, u) is a basis of R3. (c) Find the transition matrix B from the ordered basis U (t, iz, a) to the standard basis {e, е,6). For questions (d) and (e), you can write your answer in terms of A...

  • Let L : R2 → R3 be a linear transformation such that L 1 1 =...

    Let L : R2 → R3 be a linear transformation such that L 1 1 = 1 2 3 and L 1 2 = 2 1 3 . Find L 2 1 Find the standard matrix representing L. Find the dimensions of the kernel and the range of L and their bases. 12. Let L : R² + RP be a linear transformation such that L | (3) - -(5)-(1) Find I (*) Find the standard matrix representing L. Find...

  • Problem 1: Let W = {p(t) € Pz : p'le) = 0}. We know from Problem...

    Problem 1: Let W = {p(t) € Pz : p'le) = 0}. We know from Problem 1, Section 4.3 and Problem 1, Section 4.6 that W is a subspace of P3. Let T:W+Pbe given by T(p(t)) = p' (t). It is easy to check that T is a linear transformation. (a) Find a basis for and the dimension of Range T. (b) Find Ker T, a basis for Ker T and dim KerT. (c) Is T one-to-one? Explain. (d) Is...

  • 6. Let L be the linear operator mapping R3 into R3 defined by L(x) Ax, where...

    6. Let L be the linear operator mapping R3 into R3 defined by L(x) Ax, where A=12 0-2 and let 0 0 Find the transition matrix V corresponding to a change of basis from i,V2. vs) to e,e,es(standard basis for R3), and use it to determine the matrix B representing L with respect to (vi, V2. V

  • Problem 2 [10pts] Let f : R3 + R2 be a linear transformation given by f((x,...

    Problem 2 [10pts] Let f : R3 + R2 be a linear transformation given by f((x, y, z) = (–2x + 2y +z, -x +2y). Find the matrix that corresponds to f with respect to the canonical bases of R3 and R2.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT