Question

HELP ME URGENT! Consider a pipe system as shown in Figure 1. The pipe is connected to a mercury manometer at point 1 and poin

0 0
Add a comment Improve this question Transcribed image text
Answer #1

solutions 1.5m 0.15m water 1:58in 30 13010 Tix 015m Givens Sw = 1000 78 lm Ima 13500 kg/m3 HQ, SG 13.5 & Now Applying the prHow DP = F/AC Iz Ap+A a lloasy 01766 194.72 N Pove d

Add a comment
Know the answer?
Add Answer to:
HELP ME URGENT! Consider a pipe system as shown in Figure 1. The pipe is connected...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a pipe system as shown in Figure 1. The pipe is connected to a mercury...

    Consider a pipe system as shown in Figure 1. The pipe is connected to a mercury manometer at point 1 and point 2. Prove that the pipe wall between these points is exerting less than 600 N of fluid force. The frictional losses along the pipe is not negligible. Water 1.5 m 1 0.15 m 2 30° 0.15 m Mercury,SG 13.5

  • Carefully understand the concept and ansewr. FLuid Mechanics Consider a pipe system as shown in Figure...

    Carefully understand the concept and ansewr. FLuid Mechanics Consider a pipe system as shown in Figure 1. The pipe is connected to a mercury manometer at point 1 and point 2. Prove that the pipe wall between these points is exerting less than 600 N of fluid force. The frictional losses along the pipe is not negligible Water 1.5 m 1 0.15 m 2. 30° 0.15 m Mercury,SG 13.5

  • Water flows steadily downwards through a circular pipe of internal diameter 0.15 m inclined at 30°...

    Water flows steadily downwards through a circular pipe of internal diameter 0.15 m inclined at 30° to the horizontal. A U-tube manometer is used to determine the pressure difference between two points displaced axially along the pipe by a distance 1.25 m. The reading on the manometer is 0.25 m of mercury. 1.25 m 0.15 m 30 0.25 m mercury Figure 2: Manometer and pipe Neglecting the thickness of the wall, determine between points 1 and 2: a. The difference...

  • Water flows in the horizontal pipe shown in the figure. At point A the area is...

    Water flows in the horizontal pipe shown in the figure. At point A the area is 26.0 cm2 and the speed of the water is 2.20 m/s. At B the area is 15.0 cm2. The fluid in the manometer is mercury, which has a density of 13,600 kg/m3. We can treat water as an ideal fluid having a density of 1000 kg/m3. What is the manometer reading h? Question 10 (1 point) Water flows in the horizontal pipe shown in...

  • Water flows through a pipe reducer as shown in the figure. If the manometer reading h - 2 m. Find...

    Water flows through a pipe reducer as shown in the figure. If the manometer reading h - 2 m. Find the flow rate in Liters per second. Assume DI-15 cm, D2-10 cm. SG:-0.80 a. What is the effect of the angle θ b. Is this a practical arrangement, if yes why, if not how would you improve it? c. Ca n mercury be used as a manometer fluid in this arrangement? Why, or why not? SG D2 Water Di Water...

  • Problems in Fluid Pressure and Pressure Force 1. AU-tube manometer with mercury is connected to two...

    Problems in Fluid Pressure and Pressure Force 1. AU-tube manometer with mercury is connected to two points on an inclined pipe carrying water. There is an elevation difference of 4ft between the lower and upper points. If the mercury level difference between the two sides of the manometer is 20.3 inches, what is the pressure at the lower point in the pipe, if the pressure at the upper point is 17.5 psi? 2. A vertical semicircular disc of 2 m...

  • Question 10 (1 point) Water flows in the horizontal pipe shown in the figure. In Α....

    Question 10 (1 point) Water flows in the horizontal pipe shown in the figure. In Α. B At point A the area is 26.0 cm and the speed of the water is 2.20 m/s. At B the area is 15.0 cm . The fluid in the manometer is mercury, which has a density of 13,600 kg/m? We can treat water as an ideal fluid having a density of 1000 kg/m? What is the manometer reading h? 0.911 cm 4.32 cm...

  • 8. (10 points extra credit) Consider the figure shown below. It shows a U-shaped mercury manometer...

    8. (10 points extra credit) Consider the figure shown below. It shows a U-shaped mercury manometer (a device for detecting pressure differences) that is attached to a pipe along which water is flowing from left to right. The water pipe has a circular cross-section. At A the diameter of the water pipe is 5.6 cm and the speed of the water is 2.80 m/s. At B the diameter of the pipe is 3 cm. The fluid in the manometer is...

  • Consider the pipe suction lift system in the Figure B2. Consider both reservoirs to be opened...

    Consider the pipe suction lift system in the Figure B2. Consider both reservoirs to be opened to the atmospheric pressure.Calculate the pump headand the fluid power.The flowrate Q = 65 l/sThe diameter of the suction lineis = 200mm, and its f value = 0.015The minor losses in the suction line= 0.25m; The total length of the suction line= 10 mThe minor losses in the discharge line= 0.4 m; Thediameter of the discharge line= 150mm; thetotal length of the discharge line=...

  • fluid mechanics please fast 1. (15 points) Water (p-1g/cm) is flowing in pipes shown in Figure...

    fluid mechanics please fast 1. (15 points) Water (p-1g/cm) is flowing in pipes shown in Figure below. Use Bernoull's equation to calculate velocity of water at point B. - Fluid velocity in the large diameter pipe is 1m/s. - Pressure at point 2 is measured with U-tube mercury manometer (Pmercury-13,600kg/m) - h1-0.3m, h2-6cm - assume that the acceleration gravity g-10m/s 2 Manometer shows 0.7kPa pressure Ji h1

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT