Question

(4) Consider the 2 x 2 matrices 1-69). -:- (-1). «-6 -1) :-(1) (a) Prove that {1,-1}, {1,a}, and {1,3} are finite abelian gro

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution: Given

I=\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix},\ \ \ -I=\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}

\alpha =\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix},\ \ \ \beta=\begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}

Now,

(-I)(-I)=\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}=\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}=I

\alpha^2=\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}=\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}=I

\beta^2=\begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}\begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}=\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}=I

\alpha \beta=\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}\begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}=\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}=-I

\beta\alpha=\begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}=\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}=-I

a).

Now , the composition tables for \left \{ I,-I \right \},\left \{ I,\alpha \right \},\left \{ I,\beta \right \} are respectively below

\begin{matrix} * & {\color{Red} I} & {\color{Red} -I}\\ {\color{Red} I} & I & -I\\ {\color{Red} -I} & -I &I \end{matrix}\ \ \ \ \ \ \begin{matrix} * & {\color{Red} I} & {\color{Red} \alpha}\\ {\color{Red} I} & I & \alpha\\ {\color{Red} \alpha } & \alpha &I \end{matrix}\ \ \ \ \ \ \ \ \ \ \begin{matrix} * & {\color{Red} I} & {\color{Red} \beta}\\ {\color{Red} I} & I & \beta\\ {\color{Red} \beta} & \beta &I \end{matrix}

From above composition tables it is clear that

\left \{ I,-I \right \},\left \{ I,\alpha \right \},\left \{ I,\beta \right \} are closed.

\left \{ I,-I \right \},\left \{ I,\alpha \right \},\left \{ I,\beta \right \} are associative.

\left \{ I,-I \right \},\left \{ I,\alpha \right \},\left \{ I,\beta \right \} all have identity element I .

and inverse of each element is itself.

also all elements in composition tables commute to each other.

Thus, \left \{ I,-I \right \},\left \{ I,\alpha \right \},\left \{ I,\beta \right \} are abelian groups with 2 elements.

Hence, \left \{ I,-I \right \},\left \{ I,\alpha \right \},\left \{ I,\beta \right \} are finite abelian groups of order 2 .

b).

Now, the composition table for \left \{ I,-I,\alpha,\beta \right \} is below

\begin{matrix} * & {\color{Red} I} &{\color{Red} -I} & {\color{Red}\alpha } & {\color{Red} \beta} \\ {\color{Red}I } &I & -I & \alpha &\beta \\ {\color{Red} -I} & -I & I & -\alpha & -\beta\\ {\color{Red} \alpha} & \alpha & -\alpha & I & -I\\ {\color{Red}\beta } & \beta & -\beta & -I &I \end{matrix}

From above composition tables it is clear that

\left \{ I,-I,\alpha,\beta \right \} is closed.

\left \{ I,-I,\alpha,\beta \right \} is associative.

\left \{ I,-I,\alpha,\beta \right \}  has identity element I .

and inverse of each element is itself.

also all elements in composition tables commute to each other.

Thus, \left \{ I,-I,\alpha,\beta \right \} are abelian groups with 4 elements.

Hence, \left \{ I,-I,\alpha,\beta \right \} are finite abelian groups of order 4 .

Which is the required proof.

This complete the solution.

Add a comment
Know the answer?
Add Answer to:
(4) Consider the 2 x 2 matrices 1-69). -:- (-1). «-6 -1) :-(1) (a) Prove that...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT