Question

Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak t
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution & 10. Given GI(S) = S(SH) Transfer function cul RCS) GLS) I+Gls) (3) R(S) To SCSE 1 + To SestD ((s) RUS) characteris

0= tant tant ST-0.15872 0.158 0 = lill - tx= T-1.41 T-d wnl-62 = Sio Ji-0.1582 tr 0.55 sec Peak Timelte) = T OnJ1-62 ㅠ Slo fi

mp = 0.6049 mp% 60.49 qw Setteling time (78) an 2% basis ts= 4) & Wn ts- 4 (0.158) Blo ts= d.oo5 sec on 5% Basis ts= 3 & wn t

kp= Lim so G(S) Kp = Lim sto lo sest) Kp= ess O Tike Ito esso for unit ramp input essa ku= Lim SGCO Sao kv = Lim so 10 SISH)

(Ь for figu. 2(b) To S+/ lis - Kh GO) (10) 16001) 5 Kh - Gis 10 (St) + lokh → characteristic eqh I+G6S2 = 0 | + =0 10 s{ (5+13.16 Itlokh ☆ Kh = 0.216. Transient respons charcutenstic Rise time (tr) T-6 Gon 11-६२ dan Shah & -0,982 toa TT-0.982 737 to

Selling time te) = 4 & Wn 3 Ewn 3 0.5XTO 4 0.5+To 4 1.581 ナ B 1.50) = 252 see, 1.898 see Steady state error (ess) ess The V =

Add a comment
Know the answer?
Add Answer to:
Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise...

    Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2b). i Determine the value in so that the damping ratio of the system is 0.5. (1 % marks) From the result obtained in , evaluate the transient response characteristics (rise...

  • Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise...

    Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). Determine the value K, so that the damping ratio of the system is 0.5. (1 % marks) i. From the result obtained in (), evaluate the transient response characteristics (rise...

  • . a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time,...

    . a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i. Determine the value Kn so that the damping ratio of the system is 0.5. (1 % marks) ii. From the result obtained in (), evaluate the transient response characteristics (rise...

  • a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak...

    a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i Determine the value K, so that the damping ratio of the system is 0.5. (1 % marks) ii. From the result obtained in (), evaluate the transient response characteristics (rise time,...

  • a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak...

    a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i. Determine the value Kn so that the damping ratio of the system is 0.5. (1 22 marks) ii. iii. From the result obtained in (i), evaluate the transient response characteristics (rise...

  • question 2 Question 2 a) Consider the control system in Figure 2(a). Determine the transient response...

    question 2 Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). Determine the value Kin so that the damping ratio of the system is 0.5. (1 % marks) it. From the result obtained in 0. evaluate the transient response...

  • 2. You are given the motor whose transfer function is shown in Figure 2(a). s) e(s) Amplifier Mot...

    Control system 2. You are given the motor whose transfer function is shown in Figure 2(a). s) e(s) Amplifier Motor C(s) 15 Tachometer Кр Figure 2 a) If this motor were the forward transfer function of a unity feedback system, calculate the percent overshoot and settling time that could be expected. b) You want to improve the closed-loop response. Since the motor constants cannot be changed and you cannot use a different motor, an amplifier and tachometer are inserted into...

  • Question 1 (20 points) As a control system engineer you have been asked to design a...

    Question 1 (20 points) As a control system engineer you have been asked to design a controller that would improve the error and the transient response for the unity feedback system below. The proposed solution must be cost-effective, so consider a passive network-based compensator. The transient response of the closed-loop transfer function to a ramp input has a 30% overshoot (%OS = 30) and a settling time Ts= 2.73 seconds. You need to decrease the peak time by a factor...

  • 1. Consider a unity feedback control system with the transfer function G(s) = 1/[s(s+ 2)] in...

    1. Consider a unity feedback control system with the transfer function G(s) = 1/[s(s+ 2)] in the forward path. (a) Design a proportional controller that yields a stable system with percent overshoot less that 5% for the step input (b) Find settling time and peak time of the closed-loop system designed in part (a); (c) Design a PD compensator that reduces the settling time computed in (b) by a factor of 4 while keeping the percent overshoot less that 5%...

  • QUICK UPVOTE: As a control system engineer you have been asked to design a controller that...

    QUICK UPVOTE: As a control system engineer you have been asked to design a controller that would improve the error and the transient response for the unity feedback system below. The proposed solution must be cost-effective, so consider a passive network-based compensator. The transient response of the closed-loop transfer function to a ramp input has a 30% overshoot (%OS = 30) and a settling time Ts= 2.73 seconds. You need to decrease the peak time by a factor of 2,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT