Question

1 During air cooling of oranges, grapefruit, and tangelos, the heat transfer coefficient for combined convection, radiation,
0 0
Add a comment Improve this question Transcribed image text
Answer #1

air. assume Spherical shape D=0.2 m isc Orange sc Vair 0.3m/ Re = DVD VD 0.3x 0.1 1.426x10 2103.78 M ain Y₃ h = 5.05 kair Re

Add a comment
Know the answer?
Add Answer to:
1 During air cooling of oranges, grapefruit, and tangelos, the heat transfer coefficient for combined convection,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • During air cooling of oranges, grapefruit, and tangelos, the heat transfer coefficient for combined convection, radiation,...

    During air cooling of oranges, grapefruit, and tangelos, the heat transfer coefficient for combined convection, radiation, and evaporation for air velocities of 0.11<V< 0.33 m/s is determined experimentally and is expressed as h = 5.05 KairRe131D, where the diameter Dis 0.1 m. Oranges are cooled by refrigerated air at 5°C and 1 atm at a velocity of 0.3 m/s. Given: The thermal conductivity of the orange is given to be k = 0.50 W/m°C. The thermal conductivity and the kinematic...

  • During air cooling of oranges, grapefruit, and tangelos, the heat transfer coefficient for combined convection, radiation,...

    During air cooling of oranges, grapefruit, and tangelos, the heat transfer coefficient for combined convection, radiation, and evaporation for air velocities of 0.11<V 0.33 m/s is determined experimentally and is expressed as h=5.05 kairRe13/D, where the diameter Dis 0.1 m. Oranges are cooled by refrigerated air at 5°C and 1 atm at a velocity of 0.3 m/s. Given: The thermal conductivity of the orange is given to be k = 0.50 W/m-°C. The thermal conductivity and the kinematic viscosity of...

  • During air cooling of oranges, grapefruit, and tangelos, the heat transfer coefficient for combined convection, radiation,...

    During air cooling of oranges, grapefruit, and tangelos, the heat transfer coefficient for combined convection, radiation, and evaporation for air velocities of 0.11<V< 0.33 m/s is determined experimentally and is expressed as h=5.05 kairRe13/D, where the diameter Dis 0.1 m. Oranges are cooled by refrigerated air at 5°C and 1 atm at a velocity of 0.3 m/s. Given: The thermal conductivity of the orange is given to be k = 0.50 W/m-°C. The thermal conductivity and the kinematic viscosity of...

  • During air cooling of oranges, grapefruit, and tangelos, the heat transfer coefficient for combined convection, radiation,...

    During air cooling of oranges, grapefruit, and tangelos, the heat transfer coefficient for combined convection, radiation, and evaporation for air velocities of 0.11</<0.33 m/s is determined experimentally and is expressed as h= 5.05 kairRe13/D, where the diameter Dis 0.09 m. Oranges are cooled by refrigerated air at 5°C and 1 atm at a velocity of 0.3 m/s. Given: The thermal conductivity of the orange is given to be k = 0.50 W/m-°C. The thermal conductivity and the kinematic viscosity of...

  • QUESTION 1 (10 marks) a) Write the Newton's law of heat convection in fluid using convection heat transfer coef...

    QUESTION 1 (10 marks) a) Write the Newton's law of heat convection in fluid using convection heat transfer coefficient, h (Wm2.K). Please explain the equation in terms of its driving force and resistancC (2 marks) (POUCOI/C2) b) Define the heat transfer rate, q,by inside and outside convection and wall conduction considering a stainless steel cylindrical pipe (inside radius, ri and outer radius, ) with fiberglass insulator (radius, s) in ą steady state condition as shown in Figure Q11 Steam with...

  • A) Determine the convection heat transfer coefficient for the flow of air. [W/m2·°C] B) Determine the...

    A) Determine the convection heat transfer coefficient for the flow of air. [W/m2·°C] B) Determine the convection heat transfer coefficient for water. [W/m2·°C] The velocity of the fluid is 9 m/s in an 8-cm diameter and 7-m-long tube when the tube is subjected to uniform heat flux from all surfaces. Use fluid properties at 25°C. Water or Air D 8 cm L=7 m Given: The properties of air at 25°C are: k 0.02551 W/m."C v 1.562 10-5 m2/s Pr =...

  • 1) The convection coefficient, (h) for external convection heat transfer depends on the following (with units...

    1) The convection coefficient, (h) for external convection heat transfer depends on the following (with units in SI of Watts/(m2 Kelvin): The characteristic length, L The fluid thermal conductivity, k The average fluid velocity, V The fluid viscosity, μ The fluid density, ρ The fluid specific heat, cp Using the Buckingham Pi Theorem, determine a set of dimensionless groups that can be used to correlate test data for this problem. Please show all of your work for this problem (i.e....

  • (a) (iWhen is heat transfer through a fluid by conduction or by convection? For what case...

    (a) (iWhen is heat transfer through a fluid by conduction or by convection? For what case is the rate of heat transfer higher? How does the convection heat transfer coefficient differ from the thermal conductivity of a fluid? (ii) Explain the physical significance of Nusselt number (ii) By definition, discuss hydraulic diameter. Obtain an expression for hydraulic diameter of a circular tube of diameter, D (b) The local atmospheric pressure in Gboko, Benue State Nigeria (elevation 1610 m), is 834...

  • QUESTION 4 For the convection heat transfer problem shown in the following figure, (a) write the finite element m...

    QUESTION 4 For the convection heat transfer problem shown in the following figure, (a) write the finite element model related to cach of the four rectangular elements, (b) write the finite clement algebraic equation for the unknown nodal temperatures at Node 5, Assume that the thermal conductivity of the material is k-5 W(m.C), the convection heat transfer coefficient on the left surface is -28 W/(m C), and the internal heat generation is zero. (25 pts) Use the following sense and...

  • Combined convection and conduction It is desired to transport liquid metal through a pipe embedded in...

    Combined convection and conduction It is desired to transport liquid metal through a pipe embedded in a 1.2 m thick wall (k =1.2 W/m.k) at point (x) where the temperature is 650 K. The inside surface of the wall is maintained at 950 K. The outside wall is exposed to air at 300 K with a convective heat transfer coefficient of 10 W/m^2.K. Sketch the system. Calculate the temperature of the outside wall? Calculate the heat flux through the wall?...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT