Question

Water at 340 K and a flow rate of 5 kg/s enters a black, thin‐walled tube, which passes through a large furnace whose walls and air are at a temperature of 700 K. The diameter and length of the tube are 0.25 m and 8 m, respectively. Convection coefficients associated with water flow through the tube and airflow over the tube are 300 W/m2·K and 50 W/m2·K, respectively.

Water at 340 K and a flow rate of 5 kg/s enters a black, thin-walled tube, which passes through a large furnace whose walls aWrite an expression for the linearized radiation coefficient corresponding to radiation exchange between the outer surface of the pipe and the furnace walls. Determine how to calculate this coefficient if the surface temperature of the tube is represented by the arithmetic mean of its inlet and outlet values. Use these expressions to determine the outlet temperature of the water, T m , o , in K.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Tube, D = 0.25 m L = 8 m, E = 1 Air T = 700 K Water m = 5 kgis 1 T. = 300 K Furnace. Tu = 700 KKNOWN: Water at prescribed temperature and flow rate enters a 0.25 m diameter, black thin-walled tube of 8- m length, which pIm =(Tm,i +Imo)/2 1 Rtot = Revi+ 1/Revo +1/R rad Im - 7 It - Tfur Revi 1/Rev.o +1/Rrad The thermal resistances, with As =PL =Note:plzzz don't give dislike...plzzz comment if you have any problem i will try to solve your problem...plzzz give thumbs up i am in need.....

Add a comment
Know the answer?
Add Answer to:
Water at 340 K and a flow rate of 5 kg/s enters a black, thin‐walled tube,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Water at 320 K and a flow rate of 5 kg/s enters a black, thin-walled tube,...

    Water at 320 K and a flow rate of 5 kg/s enters a black, thin-walled tube, which passes through a large furnace whose walls and air are at a temperature of 700 K. The diameter and length of the tube are 0.25 m and 8 m, respectively. Convection coefficients associated with water flow through the tube and airflow over the tube are 300 W/m2K and 50 W/m2.K, respectively. Tube, D-0.25 m L-8 me-1 Air 7-700 K Water -5 kas -Fumace,...

  • Water enters through a thick-walled tube having inner and outer diameters of 19 and 38 mm and 20 m long

    Water enters through a thick-walled tube having inner and outer diameters of 19 and 38 mm and 20 m long The inlet temperature is Tmi=17℃ and outlet temperature is Tmo = 50°C. The outer surface of the tube is well Insulated, and electrical heating within the wall provides for a uniform generation rate of q = 8X105 W/m3. If the inner surface temperature of the tube Ts = 60 °C at the outlet what is the local convection heat transfer...

  • A thin-walled tube with the diameter of 0.1 m and the length of 2 m passes...

    A thin-walled tube with the diameter of 0.1 m and the length of 2 m passes through a s at the temperature of To 700 K. If water at 280 K enters into the tube at the flow rate of 0.2 Kg/ Riotal Assume there is no radiation and solve this problem for the specials external fluid temperature, hwater 200W/m .K; cp 4000 J/kg. K: har 80 W/m2 .K. s, calculate the outlet temperature of the water after finding the...

  • Waste heat of exhaust hot air from a manufacturing process may be recovered by passing water through a thin-walled tube of 1.00 cm diameter as shown. Assume the temperature of the hot air is 177℃ in...

    Waste heat of exhaust hot air from a manufacturing process may be recovered by passing water through a thin-walled tube of 1.00 cm diameter as shown. Assume the temperature of the hot air is 177℃ in cross flow with a velocity of 20 m/s over the tube. The inlet and outlet temperature of water are 20C and 60 C, rospectively, and the ilow rate is 0.2 k/s. Deiemine (a) the total heat transfer rate from air to water, (b) The...

  • A concentric tube heat exchanger for cooling lubricating oil consists of a thin-walled inner tube of...

    A concentric tube heat exchanger for cooling lubricating oil consists of a thin-walled inner tube of 25 mm diameter carrying water and an outer tube of 45 mm diameter carrying the oil. The exchanger operates in countercurrent flow with an overall heat transfer coefficient of 55 W/m2 K and the tabulated average properties given below. Mass flow rates of oil and water are both 0.1 kg/s, oil enters the exchanger at 100°C, and water enters the exchanger at 30°C. (a)...

  • Cold water with properties as shown in Table 4 flows at rate of 4 kg/s is...

    Cold water with properties as shown in Table 4 flows at rate of 4 kg/s is heated from 28 oC to 54 oC in a shell-and-tube heat exchanger as shown in Figure 4.The cold water inters the tubes through thin-walled tubes, each tube has diameter of 19 mm, and the average velocity inside each tube is 0.355 m /s. The shell side, one pass is used with hot water as the heating fluid 1.8 kg/s entering the exchanger at 93...

  • Water enters a 20-mm tube at 27°C with a flow rate of 450 kg/h. The rate...

    Water enters a 20-mm tube at 27°C with a flow rate of 450 kg/h. The rate of heat transfer from the tube wall to the fluid is given as q5'(W/m) - a x, where the coefficient a is 20 W/m2 and x (m) is the axial distance from the tube entrance. (a) Beginning with a properly defined differential control volume in the tube, derive an expression for the temperature distribution T m(x) of the water. Use this expression to determine...

  • Problem 3. (25 points) In a Rankine power system, 1.5 kg/s of steam leaves the turbine...

    Problem 3. (25 points) In a Rankine power system, 1.5 kg/s of steam leaves the turbine as saturated vapor at 0.51 bar. The steam is condensed to saturated liquid by passing it over the tubes of a shell-and-tube heat exchanger, while liquid water, having an inlet temperature of T = 280 K, is passed through the tubes. The condenser contains 100 thin-walled tubes, each of 10-mm diameter, and the total water flow rate through the tubes is 15 kg/s. The...

  • Water at an average velocity of 3.5 m/s flows through a 5-m-long stainless steel tube (k...

    Water at an average velocity of 3.5 m/s flows through a 5-m-long stainless steel tube (k = 14.2 W/m °C) in a boiler. The inner and outer diameters of the tube are Di = 1.0 cm and Do = 1.4 cm, respectively. If the convection heat transfer coefficient at the outer surface of the tube where boiling is taking place is ho = 8400 W/m2 • °C, determine product of the overall heat transfer coefficient Ui by the inner surface...

  • Thin-walled aluminum tubes of diameter D = 10 mm are used in the condenser of an air conditioner....

    Thin-walled aluminum tubes of diameter D = 10 mm are used in the condenser of an air conditioner. Under normal operating conditions, a convection coefficient of hi = 5000 W/m2 · K is associated with condensation on the inner surface of the tubes, while a coefficient of ho = 100 W/m2 · K is maintained by airflow over the tubes. a. What is the overall heat transfer coefficient if the tubes are unfinned? b. What is the overall heat transfer...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT