Question

A thin-walled tube with the diameter of 0.1 m and the length of 2 m passes through a s at the temperature of To 700 K. If water at 280 K enters into the tube at the flow rate of 0.2 Kg/ Riotal Assume there is no radiation and solve this problem for the specials external fluid temperature, hwater 200W/m .K; cp 4000 J/kg. K: har 80 W/m2 .K. s, calculate the outlet temperature of the water after finding the case of uniform
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A thin-walled tube with the diameter of 0.1 m and the length of 2 m passes...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Water at 340 K and a flow rate of 5 kg/s enters a black, thin‐walled tube,...

    Water at 340 K and a flow rate of 5 kg/s enters a black, thin‐walled tube, which passes through a large furnace whose walls and air are at a temperature of 700 K. The diameter and length of the tube are 0.25 m and 8 m, respectively. Convection coefficients associated with water flow through the tube and airflow over the tube are 300 W/m2·K and 50 W/m2·K, respectively. Write an expression for the linearized radiation coefficient corresponding to radiation exchange...

  • Water at 320 K and a flow rate of 5 kg/s enters a black, thin-walled tube,...

    Water at 320 K and a flow rate of 5 kg/s enters a black, thin-walled tube, which passes through a large furnace whose walls and air are at a temperature of 700 K. The diameter and length of the tube are 0.25 m and 8 m, respectively. Convection coefficients associated with water flow through the tube and airflow over the tube are 300 W/m2K and 50 W/m2.K, respectively. Tube, D-0.25 m L-8 me-1 Air 7-700 K Water -5 kas -Fumace,...

  • A hot fluid passes through a thin-walled tube of 10-mm diameter at 18 kg/h at a...

    A hot fluid passes through a thin-walled tube of 10-mm diameter at 18 kg/h at a temperature of 85 C. On the outside, coolant flows across the tube at a velocity of 3 m/s at a temperature of 25 C. Neglecting the thermal resistance of the metal wall, calculate 1. (a) The two heat transfer coefficients, (b) Overall heat transfer coefficient, and (c) Cooling rate (in W/m) achieved in the given configuration Assume hot fluid properties are constant at the...

  • A concentric tube heat exchanger for cooling lubricating oil consists of a thin-walled inner tube of...

    A concentric tube heat exchanger for cooling lubricating oil consists of a thin-walled inner tube of 25 mm diameter carrying water and an outer tube of 45 mm diameter carrying the oil. The exchanger operates in countercurrent flow with an overall heat transfer coefficient of 55 W/m2 K and the tabulated average properties given below. Mass flow rates of oil and water are both 0.1 kg/s, oil enters the exchanger at 100°C, and water enters the exchanger at 30°C. (a)...

  • 6 Problem 4 (25%) A 2-shell passes and 4-tube passes heat exchanger is used to heat...

    6 Problem 4 (25%) A 2-shell passes and 4-tube passes heat exchanger is used to heat glycerin (Cp.gly = 2447) entering at 15 °C by hot water (Cp water = 4180 f.), which enters at 90°C. The thin-walled inner tube has a 4 cm diameter and a total length of 15 m. The hot water flows through the tube at a total rate of 0.265 kg/s, and the glycerin through the shell at a rate of 0.6 kg/s. The convection...

  • Waste heat of exhaust hot air from a manufacturing process may be recovered by passing water through a thin-walled tube of 1.00 cm diameter as shown. Assume the temperature of the hot air is 177℃ in...

    Waste heat of exhaust hot air from a manufacturing process may be recovered by passing water through a thin-walled tube of 1.00 cm diameter as shown. Assume the temperature of the hot air is 177℃ in cross flow with a velocity of 20 m/s over the tube. The inlet and outlet temperature of water are 20C and 60 C, rospectively, and the ilow rate is 0.2 k/s. Deiemine (a) the total heat transfer rate from air to water, (b) The...

  • A concentric tube heat exchanger of length L = 2 m is used to thermally process...

    A concentric tube heat exchanger of length L = 2 m is used to thermally process a pharmaceutical product flowing at a mean velocity of u_m,c = 0.1 m/s with an inlet temperature of T_c,i = 20 degree C. The inner tube of diameter D_i = 10 mm is thin walled, and the exterior of the outer tube (D_0 = 20 mm) is well insulated. Water flows in the annular region between the tubes at a mean velocity of u_m,h...

  • A thin-walled double-pipe counter-flow heat exchanger is to be used to cool oil (cp-2200 /kg K)...

    A thin-walled double-pipe counter-flow heat exchanger is to be used to cool oil (cp-2200 /kg K) from 150 C to 40°C at a rate of 2 kg/s by water (c 4180J/kg.K) that enters at 22°C at a rate of 1.5 kg/s. The diameter of the tube is 2.5 cm, O and its length is 6 m. Let the water inlet temperature vary from 5°C to 25°C. Identify the graph that depicts the overall heat transfer coefficient as a function of...

  • rate of 1.5 kg/s. The diameter of the tube is 2.5 cm, and its length is...

    rate of 1.5 kg/s. The diameter of the tube is 2.5 cm, and its length is 6 m. Let the water inlet temperature vary from 5'C to 25"'C. Identify the graph that depicts the overall heat transfer coefficient as a function of the inlet temperature A thin walled double pipe counter flow heat exchanger is to be used to cool oil (c,-2200 J/kgK) from 150°C to 40°C at a rate of 2 kg/s by water (cp = 4180 J/kgK) that...

  • 6. A shell-and-tube heat exchanger with 2-shell passes and 12-tube passes is used to heat water...

    6. A shell-and-tube heat exchanger with 2-shell passes and 12-tube passes is used to heat water (c 4,180 J/kg K) flowing at a rate of 4.5 kg/s in the tubes from 20°C to 70°C. Heat is supplied by hot oil (cp 2300 J/kg K) that enters the shell side at 170°C at a rate of 10 kg/s. If overall heat transfer coefficient on the tube-side is 350 W/m-K, determine the heat transfer surface area on the tube side.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT