Question

6 Problem 4 (25%) A 2-shell passes and 4-tube passes heat exchanger is used to heat glycerin (Cp.gly = 2447) entering at 15 °

0 0
Add a comment Improve this question Transcribed image text
Answer #1

U n = 2 pat ㅗ L hi ho 250 ( 700 U - 2447 to Tcp = 15°C fund ( water) A = nxPX HDL 2X4 X X. 04.X S. AE 15.08 m² Overall heat T

NTV of of this heat exchanger INTU Net Transfer unit) u Asurface c min 184.211 X 15:00 i107.7. NTV = 2:5078 find & Coffective

д- How we know heat transfer rate. mg Cpg (Tez Te ) 0 •6X24+7 (T2-15 Те, = sü: 4 °C , +7 — x 10 Aus в — ThCru (1», – Th) = 3-

Please ask your doubt in the comment box.

Add a comment
Know the answer?
Add Answer to:
6 Problem 4 (25%) A 2-shell passes and 4-tube passes heat exchanger is used to heat...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. (35P) Ashell-and-tube heat exchanger with 1-shell pass and 20-tube passes is used to heat glycerin...

    2. (35P) Ashell-and-tube heat exchanger with 1-shell pass and 20-tube passes is used to heat glycerin (Cp = 2480 J/kg) in the shell, with hot water in the tubes. The tubes are thinwalled and have a diameter of 1.5 cm and length of 2 m per pass. The hot water (Cp=4180 J/kg Centers the tubes at 102°C at a rate of 9 kg/s and leaves at 55°C. Overall heat transfer coefficient U=13900 W/m2C. The glycerin enters the shell at 15°C...

  • 6. A shell-and-tube heat exchanger with 2-shell passes and 12-tube passes is used to heat water...

    6. A shell-and-tube heat exchanger with 2-shell passes and 12-tube passes is used to heat water (c 4,180 J/kg K) flowing at a rate of 4.5 kg/s in the tubes from 20°C to 70°C. Heat is supplied by hot oil (cp 2300 J/kg K) that enters the shell side at 170°C at a rate of 10 kg/s. If overall heat transfer coefficient on the tube-side is 350 W/m-K, determine the heat transfer surface area on the tube side.

  • QUESTION 2 2. A shell and tube heat exchanger with two shell passes and four tube...

    QUESTION 2 2. A shell and tube heat exchanger with two shell passes and four tube passes cools a chemical with a specific heat of 2385 J/kg K at a rate of 1.25 kg/s from 140°C to 80°C, using water at 35°C. The outlet temperature of the water is 85°C. Determine the area of heat exchanger if U= 800 W/m2-K. If the unit is operated with flow rates doubled, determine the heat transfer. Also determine the heat transfer if the...

  • A shell-and tube heat exchanger has one-shell pass and 2-tube passes. This heat exchanger is used...

    A shell-and tube heat exchanger has one-shell pass and 2-tube passes. This heat exchanger is used to cool oil, flowing through the tube-side from 140°C to 50°C. The cooling is accomplished by water, flowing through the shell-side, which enters the heat exchanger at 15°C and leaves at 32°C. Each tube pass consists of 60, 2.54-cm-O.D. tubes with a wall thickness of 1.65 mm.if the inside and outside heat transfer coefficients are h1=260 W/(m^2°C) and h°=970 W/(m^2°C), respectively, and the fouling...

  • Problem 2: Heat exchanger (25 points) Cold water (op 4179 J/kg K) enters the tubes of a heat exchanger at 20 °C at a rate of 3 kgs. while hot oil (cp 2200 J/kg.K) enters the shell at 130 C at the sam...

    Problem 2: Heat exchanger (25 points) Cold water (op 4179 J/kg K) enters the tubes of a heat exchanger at 20 °C at a rate of 3 kgs. while hot oil (cp 2200 J/kg.K) enters the shell at 130 C at the same mass flow rate and leaves at 60°C The heat exchanger consistsoftwo shells and 20 tubes, each executing four passes (two passes per shell). If the W/m2-K, assume the tube wall is very thin with convective heat transfer...

  • A single shell pass, two tube pass heat exchanger is used to heat water entering at...

    A single shell pass, two tube pass heat exchanger is used to heat water entering at Tc, in=15°C and mass flow rate 2 kg/s with ethylene glycol entering at Th, in= 85°C with a mass flow rate of 1kg/s. Calculate the rate of heat transfer Q and the outlet temperatures of the water and ethylene glycol if the heat transfer area is 10m2. (10 marks) Data: Specific Heat Capacity of ethylene glycol = 2600J/kg.°C Specific Heat Capacity of water =...

  • A counter-flow heat exchanger is stated to have an overall heat transfer coefficient of 284 W/m2.K...

    A counter-flow heat exchanger is stated to have an overall heat transfer coefficient of 284 W/m2.K when operating at design and clean conditions. Hot fluid enters the tube side at 101°C and exits at 71°C, while cold fluid enters the shell side at 27°C and exits at 42°C. After a period of use, built-up scale in the heat exchanger gives a fouling factor of 0.0004 m2 K/W. The surface area is 93 m². Assume both hot and cold fluids have...

  • be clear Problem 3 (60 Points). A 1-2 shell-and-tube heat exchanger must be designed to heat...

    be clear Problem 3 (60 Points). A 1-2 shell-and-tube heat exchanger must be designed to heat 2.5 kg/s of water from 15 to 85°C. The heating is to be accomplished by passing hot engine oil at a rate of 5.2 kg/s, which is available at 160°C, through the shell side of the exchanger. The oil is known to provide an average convection coefficient of 400 W/m2K on the outside of the tubes. Ten tubes passes the water through the shell....

  • [10] Design Problem As shown in the figure below, a double-pipe parallel-flow heat exchanger is used...

    [10] Design Problem As shown in the figure below, a double-pipe parallel-flow heat exchanger is used to heat cold fluid which is water (Cp = 4180 J/(kg.K), p = 1000 kg/m) from 20°C to 80°C at a rate of 0.15 kg/s. The heating is to be accomplished by hot fluid, which is geothermal water (Cp = 4310 J/(kg.K), p = 1050 kg/m²) available at 130°C at a mass flow rate of 0.25 kg/s. The inner tube has an inner diameter...

  • Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and...

    Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and 20 tube passes. The oil flows through the shell, and hot water flows inside the single copper tube that has an inner diameter of 20 mm, a wall thickness of 2 mm, and a length of 3 m per pass. The water enters at 360 K at a mass flow rate of 0.2 kg/s and leaves at 300 K. The inlet and outlet temperatures...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT