Question

Problem 2: Heat exchanger (25 points) Cold water (op 4179 J/kg K) enters the tubes of a heat exchanger at 20 °C at a rate of

0 0
Add a comment Improve this question Transcribed image text
Answer #1

J/K, le, : cro- q. I : s ·zt.С. Toi レJ 4-х 3 Rc T-tl 130-20 138c 56.8 e,-구 3.lse 5°c . 0234ec Pass = 382

Add a comment
Know the answer?
Add Answer to:
Problem 2: Heat exchanger (25 points) Cold water (op 4179 J/kg K) enters the tubes of a heat exchanger at 20 °C at a rate of 3 kgs. while hot oil (cp 2200 J/kg.K) enters the shell at 130 C at the sam...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2.- Hot oil (Cp = 2200 J/kg °C) is to be cooled by water (Cp =...

    2.- Hot oil (Cp = 2200 J/kg °C) is to be cooled by water (Cp = 4180 J/kg °C) in a 2-shell-passes and 12-tube-passes heat exchanger. The tubes are thin-walled and are made of copper with a diameter of 1.8 cm. The length of each tube pass in the heat exchanger is 3 m. Water flows through the tubes at a total rate of 0.1 kg/s, and the oil through the shell at a rate of 0.2 kg/s. The water...

  • 6. A shell-and-tube heat exchanger with 2-shell passes and 12-tube passes is used to heat water...

    6. A shell-and-tube heat exchanger with 2-shell passes and 12-tube passes is used to heat water (c 4,180 J/kg K) flowing at a rate of 4.5 kg/s in the tubes from 20°C to 70°C. Heat is supplied by hot oil (cp 2300 J/kg K) that enters the shell side at 170°C at a rate of 10 kg/s. If overall heat transfer coefficient on the tube-side is 350 W/m-K, determine the heat transfer surface area on the tube side.

  • A thin-walled double-pipe counter-flow heat exchanger is to be used to cool oil (cp-2200 /kg K)...

    A thin-walled double-pipe counter-flow heat exchanger is to be used to cool oil (cp-2200 /kg K) from 150 C to 40°C at a rate of 2 kg/s by water (c 4180J/kg.K) that enters at 22°C at a rate of 1.5 kg/s. The diameter of the tube is 2.5 cm, O and its length is 6 m. Let the water inlet temperature vary from 5°C to 25°C. Identify the graph that depicts the overall heat transfer coefficient as a function of...

  • 1. A shell-and-tube heat exchanger with 1 shell and 10 tubes is used to heat glycerine...

    1. A shell-and-tube heat exchanger with 1 shell and 10 tubes is used to heat glycerine in the shell, with hot water in the tubes. The tubes are thin walled and have a diameter of 1.5 cm and length of 2 m. The water enters the tubes at 100°C at a rate of 5 kg/s and leaves at 55°C. The glycerine enters the shell at 15°C and leaves at 55°C. Determine the mass flow rate of the glycerine and the...

  • heat transfer Test Yourself A Shell-and-tube heat exchanger, consisting of a single shell and 30.000 tubes,...

    heat transfer Test Yourself A Shell-and-tube heat exchanger, consisting of a single shell and 30.000 tubes, each executing two passes, is used in a large steam power plant to condense steam to liquid water. The steam condensed in the shell side of the heat exchanger with an associated convection coefficient (h) of 11.000 W/m2.°C. The heat transfer rate through the heat exchanger (O is 2x10' W. Cooling water is passing through a thin tubes with D = 2.5 cm, at...

  • Required information A shell-and-tube heat exchanger is used for cooling 47 kg/s of a process stream...

    Required information A shell-and-tube heat exchanger is used for cooling 47 kg/s of a process stream flowing through the tubes from 160°C to 136°C. This heat exchanger has a total of 100 identical tubes. each with an inside diameter of 2.5 cm and negligible wall thickness. The average properties of the process stream are: p = 950 kg/m”, k = 0.50 W/mK, Cp=3.5 kJ/kg.K, and -20 mPas The coolant stream is water (cp=4.18 kJ/kg K) at a flow rate of...

  • A shell and tube heat exchanger with one shell pass and two tube passes is used...

    A shell and tube heat exchanger with one shell pass and two tube passes is used to heat 8.82 kg/s of fluid from 15.6 °C to 60 °C by using saturated steam at 150 kPa. The steam is condensing on the outside of the tubes with h= 15 kW/m2.K. There are 50 tubes with an outside diameter of 1.91 cm and a wall thickness of 0.211 cm. If the fouling coefficient on the inside of the tubes is 5678 W/m2.K,...

  • A concentric-pipe parallel-flow heat exchanger is to heat water (cp = 4.18 kJ/kg.K) from 20°C to...

    A concentric-pipe parallel-flow heat exchanger is to heat water (cp = 4.18 kJ/kg.K) from 20°C to 80°C at a rate of 1.2 kg/s. The heating is to be accomplished by geothermal water (Cp =4.31 kJ/kg.K) available at 160°C at a mass flow rate of 2.0 kg/s. The inner pipe is thin-walled and has a diameter of 1.5 cm. If the overall heat transfer coefficient of the heat exchanger is 640 W/m2.K, determine the length of the pipe required to achieve...

  • P11-104. Cold water (Cp = 4180 J/kg-K) leading to a shower enters a thin-walled double-pipe counterflow...

    P11-104. Cold water (Cp = 4180 J/kg-K) leading to a shower enters a thin-walled double-pipe counterflow heat exchanger at 15°C at a rate of 0.25 kg/s and is heated to 45°C by hot water (cp=4190 J/kg K) that enters at 100°C at a rate of 3 kg/s. If the overall heat transfer coefficient is 950 W/m2.K, determine the rate of heat transfer and the heat surface area of the heat exchanger using the effectiveness-NTU method.

  • Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and...

    Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and 20 tube passes. The oil flows through the shell, and hot water flows inside the single copper tube that has an inner diameter of 20 mm, a wall thickness of 2 mm, and a length of 3 m per pass. The water enters at 360 K at a mass flow rate of 0.2 kg/s and leaves at 300 K. The inlet and outlet temperatures...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT