Question

Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and 20 tube passes. The oil flows

0 0
Add a comment Improve this question Transcribed image text
Answer #1

applying every balare b/w oil and wate> (MCP) w. (87) wr - Miceland (OT)ois (MCP) w (360-300) = (Mcploie ( 310 -280) (Mcp)w (LMTD (DIM) . ATI-ATE 50-20 en Cor e a (%) O im = 32.741 (MCP Jw (AT) w 2 UA DIm 0.2% 4180* (360-300) = UA * 32.741 UA = 1532.Thermal Gonductivity of water at 33° K Cany. Semb.) K-0.638 W/mK 14 Pr = 3.207 for furbulent how Using Dittes Belter en No hi@ 999999 Heat Capacity rate of one (mi (p)one (To, our - To, in): (mcpw (DJ) w mcp)ovie (310-280) - 0.2% 4-18 * (360-300) Į

Add a comment
Know the answer?
Add Answer to:
Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • can you solve only last 4 questions Q3. Oil of unknown properties is heated in a...

    can you solve only last 4 questions Q3. Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and 20 tube passes. The oil flows through the shell, and hot water flows inside the single copper tube that has an inner diameter of 20 mm, a wall thickness of 2 mm, and a length of 3 m per pass. The water enters at 360 Kat a mass flow rate of 0.2 kg/s and leaves at...

  • A shell and tube heat exchanger with one shell pass and one tube pass will be...

    A shell and tube heat exchanger with one shell pass and one tube pass will be used to condense the steam to saturated liquid, which enters the shell side as a saturated vapor at 400 K. The tube side contains R-134a refrigerant with an inlet temperature of 300 K and a mean velocity of 0.4 m/s. The steam flow rate is 1.5 kg/s. The tubes are made from AISI 302 stainless steel and have a 1" nominal diameter (Di =...

  • A shell and tube heat exchanger with one shell pass and one tube pass will be...

    A shell and tube heat exchanger with one shell pass and one tube pass will be used to condense the steam to saturated liquid, which enters the shell side as a saturated vapor at 400 K. The tube side contains R-134a refrigerant with an inlet temperature of 300 K and a mean velocity of 0.4 m/s. The steam flow rate is 1.5 kg/s. The tubes are made from AISI 302 stainless steel and have a 1" nominal diameter (Di =...

  • A shell-and tube heat exchanger has one-shell pass and 2-tube passes. This heat exchanger is used...

    A shell-and tube heat exchanger has one-shell pass and 2-tube passes. This heat exchanger is used to cool oil, flowing through the tube-side from 140°C to 50°C. The cooling is accomplished by water, flowing through the shell-side, which enters the heat exchanger at 15°C and leaves at 32°C. Each tube pass consists of 60, 2.54-cm-O.D. tubes with a wall thickness of 1.65 mm.if the inside and outside heat transfer coefficients are h1=260 W/(m^2°C) and h°=970 W/(m^2°C), respectively, and the fouling...

  • PROBLEM #3 (30 points) A shell-and (N 20) is used to heat vegetable oil on the shell side using hot water on tethat side. is Lp- 3.0 m). Each copper tube has dimensions of 15.56-mm ID and 19.05-...

    PROBLEM #3 (30 points) A shell-and (N 20) is used to heat vegetable oil on the shell side using hot water on tethat side. is Lp- 3.0 m). Each copper tube has dimensions of 15.56-mm ID and 19.05-mm OD and thermal conductivity of copper is 390 W/m-K. Water at a total flow rate of 3.33 kg/s enters the tubes of the heat exchanger at 360 K and leaves at 300 K The inlet and outlet temperatures of oil are 290...

  • Section C – shell and tube heat exchanger sizing The vapour condenser for the combined gas-steam ...

    Section C – shell and tube heat exchanger sizing The vapour condenser for the combined gas-steam power cycle described in Section B heats river water from 15 °C to 18 °C. The condenser is a shell and tube heat exchanger with one shell pass and two tube passes. The cooling water is inside the tubes while the shell side has the condensing vapour. More details: a. The tube OD is 1 ¼” (inches), the tube wall thickness is 0.05 inches....

  • Problem (25 Points - Chapter 11) A concentre tube heat exchanger for cooling lubricating oil is...

    Problem (25 Points - Chapter 11) A concentre tube heat exchanger for cooling lubricating oil is comprised of a thin-walled me tube of 25-mm diameter carrying water and an our tube of 45mm diameter coming the The heat exchanger operates in counterflow with an overall heat transfer coefficient of W K and the average property as given in the table below. If the outlet temperature of the oil is 60°C, determine the following (a) total heat transfer rate, (b) outlet...

  • Problem 3 (40pts) A shell and tube heat exchanger is being designed for an application of...

    Problem 3 (40pts) A shell and tube heat exchanger is being designed for an application of cooling hot oil. When new, the heat exchanger has an overall heat transfer coefficient, U = 300 W/m2- K. The cooling water is available at 4.5 kg/sec and 20°C. (Cpoil = 2.3 kJ/kg-K & Cpwater = 4.18 kJ/kg-K) Based on experience with this water supply, the heat exchanger will experience fouling due to mineral deposits in the water. The fouling factor is estimated to...

  • A shell and tube heat exchanger with one shell pass and two tube passes is used...

    A shell and tube heat exchanger with one shell pass and two tube passes is used to heat 8.82 kg/s of fluid from 15.6 °C to 60 °C by using saturated steam at 150 kPa. The steam is condensing on the outside of the tubes with h= 15 kW/m2.K. There are 50 tubes with an outside diameter of 1.91 cm and a wall thickness of 0.211 cm. If the fouling coefficient on the inside of the tubes is 5678 W/m2.K,...

  • A shell-and-tube heat exchanger similar to the one shown in the Figure below is used to...

    A shell-and-tube heat exchanger similar to the one shown in the Figure below is used to recover energy from waste water at 40°C to heat fresh water entering at 18°C. The mass flow rate of the waste water is 4 kg/s which is the same as that of the fresh water. Using the data given, calculate: (i) the optimum rate of energy recovery; the required heat transfer area; (iii) the temperature of the fresh water at exit. Shell fluid inlet...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT