Question

Problem (25 Points - Chapter 11) A concentre tube heat exchanger for cooling lubricating oil is comprised of a thin-walled me
TABLE 11.4 Heat Exchanger NTU Relations Flow Arrangement Relation Parallellow Counterflow NTU - 10 (1 = 4 +C) NTUC-() NTU-T (
0 0
Add a comment Improve this question Transcribed image text
Answer #1

To water U= Go w/m2 11 Thi inlet temp.ch oil. - sx The = exit temp. of oil. Tei= inlet temp. of water h for of) Tee = Exit tea) Total heat transfer rate Da mn Cph Thi The ... = 0.1X 1900 x(100-60) Q. = 7600 W 6 Heat lust by oil - Heat gained by waterso rength of heat exchangey, 1 0 - 7600 E UITDi ATM GTX 25 X 10 3 430 L.53175 m) NTU AS Q = UA 6im. 76002 GOX AX 30 A = 760080 m Effectiveness for parallel Ez e-NTU (1-6). - I-ce-NTU (1-0) I-e-133C 1-0.45 ) 1-01 45 e 1.33 (1-0.45) TE - 0.662 Dry

Add a comment
Know the answer?
Add Answer to:
Problem (25 Points - Chapter 11) A concentre tube heat exchanger for cooling lubricating oil is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A concentric tube heat exchanger for cooling lubricating oil consists of a thin-walled inner tube of...

    A concentric tube heat exchanger for cooling lubricating oil consists of a thin-walled inner tube of 25 mm diameter carrying water and an outer tube of 45 mm diameter carrying the oil. The exchanger operates in countercurrent flow with an overall heat transfer coefficient of 55 W/m2 K and the tabulated average properties given below. Mass flow rates of oil and water are both 0.1 kg/s, oil enters the exchanger at 100°C, and water enters the exchanger at 30°C. (a)...

  • Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and...

    Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and 20 tube passes. The oil flows through the shell, and hot water flows inside the single copper tube that has an inner diameter of 20 mm, a wall thickness of 2 mm, and a length of 3 m per pass. The water enters at 360 K at a mass flow rate of 0.2 kg/s and leaves at 300 K. The inlet and outlet temperatures...

  • A concentric tube heat exchanger for cooling lubricating oil is comprised of a thin-walled inner tube...

    A concentric tube heat exchanger for cooling lubricating oil is comprised of a thin-walled inner tube of 25 mm diameter carrying water and an outer tube of 45 mm diameter carrying the oil. The mass flow rates of both fluids are 0.1 kg/s. The exchanger operates in counter-flow with an overall heat transfer coefficient of 60 W/m2

  • A shell-and-tube heat exchanger similar to the one shown in the Figure below is used to...

    A shell-and-tube heat exchanger similar to the one shown in the Figure below is used to recover energy from waste water at 40°C to heat fresh water entering at 18°C. The mass flow rate of the waste water is 4 kg/s which is the same as that of the fresh water. Using the data given, calculate: (i) the optimum rate of energy recovery; the required heat transfer area; (iii) the temperature of the fresh water at exit. Shell fluid inlet...

  • The condenser of a large steam power plant is a heat exchanger in which steam is...

    The condenser of a large steam power plant is a heat exchanger in which steam is condensed to liquid water. Assume the condenser to be a shell-and-tube heat exchanger consisting of a single shell and 30,000 tubes, each executing two passes (see figure below). The tubes are of thin wall construction with D=25mm, and steam condenses on their outer surface with an associated convection coefficient ho=11,000W/ m K The heat transfer rate that must be effected by the heat exchanger...

  • Problem 2: Heat exchanger (25 points) Cold water (op 4179 J/kg K) enters the tubes of a heat exchanger at 20 °C at a rate of 3 kgs. while hot oil (cp 2200 J/kg.K) enters the shell at 130 C at the sam...

    Problem 2: Heat exchanger (25 points) Cold water (op 4179 J/kg K) enters the tubes of a heat exchanger at 20 °C at a rate of 3 kgs. while hot oil (cp 2200 J/kg.K) enters the shell at 130 C at the same mass flow rate and leaves at 60°C The heat exchanger consistsoftwo shells and 20 tubes, each executing four passes (two passes per shell). If the W/m2-K, assume the tube wall is very thin with convective heat transfer...

  • Problem X3-5, Heat Transfer, Spring 2018 A single-pass, double-tube counterflow heat exchanger will be used to...

    Problem X3-5, Heat Transfer, Spring 2018 A single-pass, double-tube counterflow heat exchanger will be used to heat a 0.14 kg/s stream of water nowing in the 12-mm diameter inside tube. The water in the inside tube enters the heat exchanger at 25 C. The water will be heated with a 0.12 kg/s m of hot water flowing in the annulus between the inside and outside tube that enters the heat exchanger at 80°C. UP the hot and cold streams, and...

  • A shell-and tube heat exchanger has one-shell pass and 2-tube passes. This heat exchanger is used...

    A shell-and tube heat exchanger has one-shell pass and 2-tube passes. This heat exchanger is used to cool oil, flowing through the tube-side from 140°C to 50°C. The cooling is accomplished by water, flowing through the shell-side, which enters the heat exchanger at 15°C and leaves at 32°C. Each tube pass consists of 60, 2.54-cm-O.D. tubes with a wall thickness of 1.65 mm.if the inside and outside heat transfer coefficients are h1=260 W/(m^2°C) and h°=970 W/(m^2°C), respectively, and the fouling...

  • QUESTION 2 2. A shell and tube heat exchanger with two shell passes and four tube...

    QUESTION 2 2. A shell and tube heat exchanger with two shell passes and four tube passes cools a chemical with a specific heat of 2385 J/kg K at a rate of 1.25 kg/s from 140°C to 80°C, using water at 35°C. The outlet temperature of the water is 85°C. Determine the area of heat exchanger if U= 800 W/m2-K. If the unit is operated with flow rates doubled, determine the heat transfer. Also determine the heat transfer if the...

  • be clear Problem 3 (60 Points). A 1-2 shell-and-tube heat exchanger must be designed to heat...

    be clear Problem 3 (60 Points). A 1-2 shell-and-tube heat exchanger must be designed to heat 2.5 kg/s of water from 15 to 85°C. The heating is to be accomplished by passing hot engine oil at a rate of 5.2 kg/s, which is available at 160°C, through the shell side of the exchanger. The oil is known to provide an average convection coefficient of 400 W/m2K on the outside of the tubes. Ten tubes passes the water through the shell....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT