Question

A shell-and-tube heat exchanger similar to the one shown in the Figure below is used to recover energy from waste water at 40
0 0
Add a comment Improve this question Transcribed image text
Answer #1

S)» Guven Data Tiwwa 40° c T44% = 18°C : це • ks رأ) 4 4 4x4 ni ww = nifw = ungle U= 2700 W/m²K R=1 Өркін хоч боur%, халы whe

2 \li ) 1) 246 48 - m + ( те Ru -15 ) 4*4 11 (тед» - 18 ) 46-4 ( Tee - 14) Te fue 16:48 — 34:2°C 12 Temperature of fresh wate

Add a comment
Know the answer?
Add Answer to:
A shell-and-tube heat exchanger similar to the one shown in the Figure below is used to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and...

    Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and 20 tube passes. The oil flows through the shell, and hot water flows inside the single copper tube that has an inner diameter of 20 mm, a wall thickness of 2 mm, and a length of 3 m per pass. The water enters at 360 K at a mass flow rate of 0.2 kg/s and leaves at 300 K. The inlet and outlet temperatures...

  • Problem (25 Points - Chapter 11) A concentre tube heat exchanger for cooling lubricating oil is...

    Problem (25 Points - Chapter 11) A concentre tube heat exchanger for cooling lubricating oil is comprised of a thin-walled me tube of 25-mm diameter carrying water and an our tube of 45mm diameter coming the The heat exchanger operates in counterflow with an overall heat transfer coefficient of W K and the average property as given in the table below. If the outlet temperature of the oil is 60°C, determine the following (a) total heat transfer rate, (b) outlet...

  • A shell-and tube heat exchanger has one-shell pass and 2-tube passes. This heat exchanger is used...

    A shell-and tube heat exchanger has one-shell pass and 2-tube passes. This heat exchanger is used to cool oil, flowing through the tube-side from 140°C to 50°C. The cooling is accomplished by water, flowing through the shell-side, which enters the heat exchanger at 15°C and leaves at 32°C. Each tube pass consists of 60, 2.54-cm-O.D. tubes with a wall thickness of 1.65 mm.if the inside and outside heat transfer coefficients are h1=260 W/(m^2°C) and h°=970 W/(m^2°C), respectively, and the fouling...

  • QUESTION 2 2. A shell and tube heat exchanger with two shell passes and four tube...

    QUESTION 2 2. A shell and tube heat exchanger with two shell passes and four tube passes cools a chemical with a specific heat of 2385 J/kg K at a rate of 1.25 kg/s from 140°C to 80°C, using water at 35°C. The outlet temperature of the water is 85°C. Determine the area of heat exchanger if U= 800 W/m2-K. If the unit is operated with flow rates doubled, determine the heat transfer. Also determine the heat transfer if the...

  • A shell and tube heat exchanger with one shell pass and two tube passes is used...

    A shell and tube heat exchanger with one shell pass and two tube passes is used to heat 8.82 kg/s of fluid from 15.6 °C to 60 °C by using saturated steam at 150 kPa. The steam is condensing on the outside of the tubes with h= 15 kW/m2.K. There are 50 tubes with an outside diameter of 1.91 cm and a wall thickness of 0.211 cm. If the fouling coefficient on the inside of the tubes is 5678 W/m2.K,...

  • 1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold strea...

    1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold stream Hot stream Crude Oil Fluid Cooling water Tube side Stream allocation Shell side Mass flow rate (kg/s) 110 30 Inlet temperature (C) 90 Outlet temperature (C) Heat capacity (J/kg K) Density (kg/m2) Viscosity (Pa-s) Thermal conductivity (W/m-K) Fouling factor (m2 CW) 40 50 2177 4187 787 995 0.72-10 1.89-103 0.122 0.59 0.0002 0.0004 The shell and tube heat exchanger has the following...

  • 1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold strea...

    1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold stream Hot stream Crude Oil Fluid Cooling water Tube side Stream allocation Shell side Mass flow rate (kg/s) 110 30 Inlet temperature (C) 90 Outlet temperature (C) Heat capacity (J/kg K) Density (kg/m2) Viscosity (Pa-s) Thermal conductivity (W/m-K) Fouling factor (m2 CW) 40 50 2177 4187 787 995 0.72-10 1.89-103 0.122 0.59 0.0002 0.0004 The shell and tube heat exchanger has the following...

  • A shell and tube heat exchanger with one shell pass and one tube pass will be...

    A shell and tube heat exchanger with one shell pass and one tube pass will be used to condense the steam to saturated liquid, which enters the shell side as a saturated vapor at 400 K. The tube side contains R-134a refrigerant with an inlet temperature of 300 K and a mean velocity of 0.4 m/s. The steam flow rate is 1.5 kg/s. The tubes are made from AISI 302 stainless steel and have a 1" nominal diameter (Di =...

  • A single shell pass, two tube pass heat exchanger is used to heat water entering at...

    A single shell pass, two tube pass heat exchanger is used to heat water entering at Tc, in=15°C and mass flow rate 2 kg/s with ethylene glycol entering at Th, in= 85°C with a mass flow rate of 1kg/s. Calculate the rate of heat transfer Q and the outlet temperatures of the water and ethylene glycol if the heat transfer area is 10m2. (10 marks) Data: Specific Heat Capacity of ethylene glycol = 2600J/kg.°C Specific Heat Capacity of water =...

  • 6. A shell-and-tube heat exchanger with 2-shell passes and 12-tube passes is used to heat water...

    6. A shell-and-tube heat exchanger with 2-shell passes and 12-tube passes is used to heat water (c 4,180 J/kg K) flowing at a rate of 4.5 kg/s in the tubes from 20°C to 70°C. Heat is supplied by hot oil (cp 2300 J/kg K) that enters the shell side at 170°C at a rate of 10 kg/s. If overall heat transfer coefficient on the tube-side is 350 W/m-K, determine the heat transfer surface area on the tube side.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT