Question

A single shell pass, two tube pass heat exchanger is used to heat water entering at...

A single shell pass, two tube pass heat exchanger is used to heat water entering at Tc, in=15°C and mass flow rate 2 kg/s with ethylene glycol entering at Th, in= 85°C with a mass flow rate of 1kg/s. Calculate the rate of heat transfer Q and the outlet temperatures of the water and ethylene glycol if the heat transfer area is 10m2. (10 marks)

Data:

Specific Heat Capacity of ethylene glycol = 2600J/kg.°C Specific Heat Capacity of water = 4180 J/kg.°C

overall heat transfer coefficient = 720 W/m^2K

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A single shell pass, two tube pass heat exchanger is used to heat water entering at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and...

    Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and 20 tube passes. The oil flows through the shell, and hot water flows inside the single copper tube that has an inner diameter of 20 mm, a wall thickness of 2 mm, and a length of 3 m per pass. The water enters at 360 K at a mass flow rate of 0.2 kg/s and leaves at 300 K. The inlet and outlet temperatures...

  • A shell-and-tube heat exchanger similar to the one shown in the Figure below is used to...

    A shell-and-tube heat exchanger similar to the one shown in the Figure below is used to recover energy from waste water at 40°C to heat fresh water entering at 18°C. The mass flow rate of the waste water is 4 kg/s which is the same as that of the fresh water. Using the data given, calculate: (i) the optimum rate of energy recovery; the required heat transfer area; (iii) the temperature of the fresh water at exit. Shell fluid inlet...

  • Question 3 A counter flow single pass double pipe heat exchanger is supplied with hot water...

    Question 3 A counter flow single pass double pipe heat exchanger is supplied with hot water at 120°C that is to be cooled by water entering at 20°C. The mass flow rate of the hot stream is 5 kg/s, and that of the cold stream is 6 kg/s. The specific heat capacity of both fluids may be taken as 4180 J/kg.K. The overall U value is 1500W/m2.K, and the surface area for heat transfer is 20 m2 a) Determine the...

  • QUESTION 2 2. A shell and tube heat exchanger with two shell passes and four tube...

    QUESTION 2 2. A shell and tube heat exchanger with two shell passes and four tube passes cools a chemical with a specific heat of 2385 J/kg K at a rate of 1.25 kg/s from 140°C to 80°C, using water at 35°C. The outlet temperature of the water is 85°C. Determine the area of heat exchanger if U= 800 W/m2-K. If the unit is operated with flow rates doubled, determine the heat transfer. Also determine the heat transfer if the...

  • A shell and tube heat exchanger with one shell pass and one tube pass will be...

    A shell and tube heat exchanger with one shell pass and one tube pass will be used to condense the steam to saturated liquid, which enters the shell side as a saturated vapor at 400 K. The tube side contains R-134a refrigerant with an inlet temperature of 300 K and a mean velocity of 0.4 m/s. The steam flow rate is 1.5 kg/s. The tubes are made from AISI 302 stainless steel and have a 1" nominal diameter (Di =...

  • A shell and tube heat exchanger with one shell pass and one tube pass will be...

    A shell and tube heat exchanger with one shell pass and one tube pass will be used to condense the steam to saturated liquid, which enters the shell side as a saturated vapor at 400 K. The tube side contains R-134a refrigerant with an inlet temperature of 300 K and a mean velocity of 0.4 m/s. The steam flow rate is 1.5 kg/s. The tubes are made from AISI 302 stainless steel and have a 1" nominal diameter (Di =...

  • 2. (35P) Ashell-and-tube heat exchanger with 1-shell pass and 20-tube passes is used to heat glycerin...

    2. (35P) Ashell-and-tube heat exchanger with 1-shell pass and 20-tube passes is used to heat glycerin (Cp = 2480 J/kg) in the shell, with hot water in the tubes. The tubes are thinwalled and have a diameter of 1.5 cm and length of 2 m per pass. The hot water (Cp=4180 J/kg Centers the tubes at 102°C at a rate of 9 kg/s and leaves at 55°C. Overall heat transfer coefficient U=13900 W/m2C. The glycerin enters the shell at 15°C...

  • 6 Problem 4 (25%) A 2-shell passes and 4-tube passes heat exchanger is used to heat...

    6 Problem 4 (25%) A 2-shell passes and 4-tube passes heat exchanger is used to heat glycerin (Cp.gly = 2447) entering at 15 °C by hot water (Cp water = 4180 f.), which enters at 90°C. The thin-walled inner tube has a 4 cm diameter and a total length of 15 m. The hot water flows through the tube at a total rate of 0.265 kg/s, and the glycerin through the shell at a rate of 0.6 kg/s. The convection...

  • A shell-and tube heat exchanger has one-shell pass and 2-tube passes. This heat exchanger is used...

    A shell-and tube heat exchanger has one-shell pass and 2-tube passes. This heat exchanger is used to cool oil, flowing through the tube-side from 140°C to 50°C. The cooling is accomplished by water, flowing through the shell-side, which enters the heat exchanger at 15°C and leaves at 32°C. Each tube pass consists of 60, 2.54-cm-O.D. tubes with a wall thickness of 1.65 mm.if the inside and outside heat transfer coefficients are h1=260 W/(m^2°C) and h°=970 W/(m^2°C), respectively, and the fouling...

  • heat transfer Test Yourself A Shell-and-tube heat exchanger, consisting of a single shell and 30.000 tubes,...

    heat transfer Test Yourself A Shell-and-tube heat exchanger, consisting of a single shell and 30.000 tubes, each executing two passes, is used in a large steam power plant to condense steam to liquid water. The steam condensed in the shell side of the heat exchanger with an associated convection coefficient (h) of 11.000 W/m2.°C. The heat transfer rate through the heat exchanger (O is 2x10' W. Cooling water is passing through a thin tubes with D = 2.5 cm, at...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT