Question

A uniform beam of length L - 4.0 m and weight W - 100 N is free to rotate about a pivot situated at a distance d = 1.4 m from
0 0
Add a comment Improve this question Transcribed image text
Answer #1

T Lo Z net + W (4-d) (Fsind) d + (a osind ) 1.4 100 ( % -14) ent 56 sind + 60 ll CS Scanned with Cam Scanner

Add a comment
Know the answer?
Add Answer to:
A uniform beam of length L - 4.0 m and weight W - 100 N is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Answer with a numerical value. A uniform beam of length - 4,0 m and weight W...

    Answer with a numerical value. A uniform beam of length - 4,0 m and weight W = 100 N is free to rotate about a pivot situated at a distance d = 1.4 m from one end. When the beam is horizontal, a force F = 40 N is applied at one end of the beam, at shown in the figure. Calculate the net torque exerted on the beam, in NmDo not type in units. F Q d 1/2 1/2...

  • A uniform horizontal beam of length 8 m and weight 200 N is attached to a...

    A uniform horizontal beam of length 8 m and weight 200 N is attached to a wall by a pin connection that allows the beam to rotate. Its far end is supported by a cable that makes an angle of 53degree with the horizontal. If a cable is strong enough to withstand T= 1200 N how heavy person can walk to the end of the beam? When that person was at the 0.75 distance from the wall, find: a. the...

  • A uniform horizontal beam with a length l = 8.00 m and weight of Wb =...

    A uniform horizontal beam with a length l = 8.00 m and weight of Wb = 200 N is attached to a wall by a pin connection. Its far end is supported by a cable that makes an angle of θ = 53.0◦ with the beam. A person of weight Wp = 600 N stands a distance d = 2.00 m from the wall. Find the tension in the cable.

  • 1. A uniform horizontal bar of length L = 2.0 m and weight 144 N is...

    1. A uniform horizontal bar of length L = 2.0 m and weight 144 N is pinned to a vertical wall and supported by a thin wire that makes an angle of 0 = 150 with the horizontal. A mass M, with a weight of 302 N, can be moved anywhere along the bar. The wire can withstand a maximum tension of 573 N. What is the maximum possible distance from the wall at which mass M can be placed...

  • A drum of weight 200 N is supported by a beam of length s, weight W...

    A drum of weight 200 N is supported by a beam of length s, weight W and a rope of length r. The mass per unit length of the beam is uniform. If the force exerted on the beam by the hinge is 200 N and acts at an angle of 25 above the horizontal then the tension in the cable of length r is TV zoo (a) 224 N (b) 79 N (c) 105 N (d) 338 N

  • One end of a uniform rod of weight w = 72.5 N and length L =...

    One end of a uniform rod of weight w = 72.5 N and length L = 2.80 m is supported by a cable at an angle of theta = 33.5 degree above the rod. The other end rests on a small frictionless support and presses into a wall as shown in the figure. Determine the magnitude n of the vertical normal force exerted by the support on the rod and find the magnitude f of the tension in the cable....

  • Example 10.8 Rotating Rod A uniform rod of length L 1.6 m and mass 2.8 k...

    Example 10.8 Rotating Rod A uniform rod of length L 1.6 m and mass 2.8 k is attached at one end to a frictionless pivot and is free to rotate about the pivot in the vertical plane as in the figure. The rod is released from rest in the horizontal position. What are the initial angular acceleration of the rod and the initial translational acceleration of its right end Pivot SOLVE IT Mg A rod is free to rotate around...

  • Q-4 (25 pts A uniform bar of length (L), cross sectional area (A) and mass (m) is free to rotate about a frictionle...

    Q-4 (25 pts A uniform bar of length (L), cross sectional area (A) and mass (m) is free to rotate about a frictionless hinge at "O" in a horizontal plane. At the instant shown its angular velocity is (w) rad/sec clockwise and the applied torque (T) is clockwise. For the instant determine: a) The reactions at the hinge "O b) The internal forces (Shear force V, axial force F) in the middle of the bar (xeL/2 from hinge "O") Hint:...

  • A uniform beam of length 10.0 m and mass 50.0 kg is attached to a wall...

    A uniform beam of length 10.0 m and mass 50.0 kg is attached to a wall at one end and free to pivot at this point. The beam is held horizontal by a cable attached to the far end of the beam and to a point on the wall 5.77 m above the pivot point. The angle between the beam and the cable is 30 degrees. A. What is the tension in the cable? B. What force is exerted by...

  • Problem 6: A uniform beam of length L = 3.2 m and mass M = 32 kg has its lower end fixed to pivot at a point P on the floor

    Problem 6: A uniform beam of length L = 3.2 m and mass M = 32 kg has its lower end fixed to pivot at a point P on the floor, making an angle θ = 29° as shown in the digram. A horizontal cable is attached at its upper end B to a point A on a wall. A box of the same mass Mas the beam is suspended from a rope that is attached to the beam one-fourth...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT