Question

Chapter 31, Problem 040 An alternating source drives series RLC circuit with an emf amplitude of 6.18 V, at a phase angle of

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Em V - Vo Em coso En = V²+ (U - VcJ2 or W = Vetem - Vet VRE V = Vet V = Vet Em 1-cost & V = Ve + Em sine Eu - Ens costu Vc=5.

Add a comment
Know the answer?
Add Answer to:
Chapter 31, Problem 040 An alternating source drives series RLC circuit with an emf amplitude of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An alternating source drives a series RLC circuit with an emf amplitude of 6.0 V. The...

    An alternating source drives a series RLC circuit with an emf amplitude of 6.0 V. The following three elements are connected in series: a resistor of 1812, a 24 mH inductor, and a 0.50 pF capacitor. What is the amplitude of the potential difference across the inductor, in V, at resonance?

  • A series RLC circuit driven by a source with an amplitude of 120.0 V and a...

    A series RLC circuit driven by a source with an amplitude of 120.0 V and a frequency of 50.0 Hz has an inductance of 797 mH, a resistance of 289 Q, and a capacitance of 47.1 pF. (a) What are the maximum current and the phase angle between the current and the source emf in this circuit? 265.07 x Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. A 29.59...

  • Chapter 31, Problem 045 (a) In an RLC circuit, can the amplitude of the voltage across...

    Chapter 31, Problem 045 (a) In an RLC circuit, can the amplitude of the voltage across an inductor be greater than the amplitude of the generator emf? (b) Consider an RLC circuit with driving emf amplitude Em-8 V resistance R = 9 Ω, inductance L = 1.0 H, and capacitance C = 1.1 μF. Find the amplitude of the voltage across the inductor at resonance (b) Number Units the tolerance is +/-596

  • We have a series RLC circuit with an AC voltage source: The resistance is 100Ohm, the inductance ...

    We have a series RLC circuit with an AC voltage source: The resistance is 100Ohm, the inductance is 10mH, the capacitance is 10mF. Select all the right answers. At 60Hz What is true? Question 10 options: The current through the inductor is larger than through the resistor The voltage across the inductor is larger than the voltage across the capacitor The voltage is lagging behind the current at the source The voltage and the current are in phase at the...

  • A series LRC circuit is driven by an ac source with a voltage amplitude of 36.0...

    A series LRC circuit is driven by an ac source with a voltage amplitude of 36.0 V and a frequency of 60.0 Hz. The resistance is 160 Ohm, the inductance is 0.230 H, and the capacitance is 70.0 mu F. a) Determine the impedance of the circuit. b) Determine the current amplitude. c) Determine the voltage amplitude across (i) the resistor, (ii) the inductor and (iii) the capacitor. d) Sketch the phasor diagram (at t = 0) for the circuit,...

  • In an RLC series circuit that includes a source of alternating current operating at fixed frequency...

    In an RLC series circuit that includes a source of alternating current operating at fixed frequency and voltage, the resistance R is equal to the inductive reactance. The RLC series circuit uses a parallel plate capacitor. If the plate separation of the capacitor is reduced to half of its original value, the current in the circuit doubles. Find the initial capacitive reactance in terms of R.

  • An RLC series circuit with 150-ohm resistor, 25-mH inductor, and 2 microfarad-capacitor is powered by an...

    An RLC series circuit with 150-ohm resistor, 25-mH inductor, and 2 microfarad-capacitor is powered by an AC voltage source with a peak voltage of 340V and a frequency of 660 Hz. (a) Find the peak current that flows in the circuit. (b) Determine the phase angle of the source voltage relative to the current. (c) Determine the peak voltage across the resistor and its phase angle relative to the voltage source. (d) Find the peak voltage across the inductor and...

  • An RLC series circuit with 150-ohm resistor, 25-mH inductor, and 2 microfarad-capacitor is powered by an...

    An RLC series circuit with 150-ohm resistor, 25-mH inductor, and 2 microfarad-capacitor is powered by an AC voltage source with a peak voltage of 340V and a frequency of 660 Hz. (a) Find the peak current that flows in the circuit. (b) Determine the phase angle of the source voltage relative to the current. (c) Determine the peak voltage across the resistor and its phase angle relative to the voltage source. (d) Find the peak voltage across the inductor and...

  • 3. Consider the AC circuit shown in the figure below, consisting of an alternating voltage source—of...

    3. Consider the AC circuit shown in the figure below, consisting of an alternating voltage source—of voltage V (t) = V0 cos (ωt)—a capacitor (of capacitance C), an inductor (of inductance L), and two resistors (of resistances R1 and R2). Also, note the highlighted points a and b in the circuit. (a) While explaining your reasoning, determine the necessary condition that must be satisfied between the circuit elements such that the potential difference between points a and b is zero...

  • A phasor diagram is drawn for a series RLC circuit driven by a source of alternating...

    A phasor diagram is drawn for a series RLC circuit driven by a source of alternating (sinusoidal) voltage. Four phasors are drawn: VL, I, Vc, and VR at a particular instant in time. The frequency of the voltage source (i.e. the signal generator) is set to a value larger than the resonant frequency of the circuit. a. Label each phasor appropriately and identify the angle indicated by the arc with its appropriate label. b. Draw a fifth phasor on the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT