Question









Part 2: (Theory) Simple Harmonie Motion in a Mass-Spring System Sketch a simple horizontal, mass-spring system with the mass
0 0
Add a comment Improve this question Transcribed image text
Answer #1

The equation of motion of the mass mdza Kre ata (2 ) dan at Giren X (H = A los, wt+8, di per farting winto it depende saw-aw

Add a comment
Know the answer?
Add Answer to:
Part 2: (Theory) Simple Harmonie Motion in a Mass-Spring System Sketch a simple horizontal, mass-spring system...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Equations of Simple Harmonic Motion (basic) PLEASE! show work and only answer if you know how...

    Equations of Simple Harmonic Motion (basic) PLEASE! show work and only answer if you know how to do it. People keeps giving me the wrong answer. Analyzing Newton's 2^nd Law for a mass spring system, we found a_x = -k/m X. Comparing this to the x-component of uniform circular motion, we found as a possible solution for the above equation: x = Acos(omega t) v_x = - omega Asin(omega t) a_x = - omega^2 Acos(omega t) with omega = square...

  • A mass m on a spring of stiffness k undergoes horizontal simple harmonic motion with amplitude...

    A mass m on a spring of stiffness k undergoes horizontal simple harmonic motion with amplitude A, centered around x = 0. a) What is the total "mechanical" energy (kinetic plus potential) of the mass-spring system? b) What is the value of x when the mass-spring system has twice as much kinetic energy as potential energy? Your answers should be in terms of the quantities m, k, and A--or some subset thereof.

  • Exercises 1. (introduction) Sketch or plot the displacement of the mass in a mass-spring system for at least two per...

    Exercises 1. (introduction) Sketch or plot the displacement of the mass in a mass-spring system for at least two periods for the case when Wn-2rad/s, 괴,-1mm, and eto =-v/5mm/s. 2. (introduction) The approximation sin θ ะ θ is reasonable for θ < 10°. If a pendulum of length 0.5m, has an initial position of 0()0, what is the maximum value of the initial angular velocity that can be given to the pendulum without violating this smll angle approximation? 3. (harmonic...

  • Periodic Motion A block of mass M is attached to a horizontal spring with force constant...

    Periodic Motion A block of mass M is attached to a horizontal spring with force constant k. It is moving with simple harmonic motion of amplitude A. Calculate how much of the energy of the motion is kinetic at x= ¼ A. If one adds a mass smoothly in a vertical drop at x=A, calculate what happens to A, T, and w.

  • Problem 1 (Harmonic Oscillators) A mass-damper-spring system is a simple harmonic oscillator whose dynamics is governed...

    Problem 1 (Harmonic Oscillators) A mass-damper-spring system is a simple harmonic oscillator whose dynamics is governed by the equation of motion where m is the mass, c is the damping coefficient of the damper, k is the stiffness of the spring, F is the net force applied on the mass, and x is the displacement of the mass from its equilibrium point. In this problem, we focus on a mass-damper-spring system with m = 1 kg, c-4 kg/s, k-3 N/m,...

  • THE SPRING FORCE AND SIMPLE HARMONIC MOTION To measure and study various characteristics of a mass/spring...

    THE SPRING FORCE AND SIMPLE HARMONIC MOTION To measure and study various characteristics of a mass/spring system, including the spring constant and the dependence of the oscillation frequency on the amplitude of oscillation. i) You will measure the spring constant using two different methods: static and dynamic. ii) You will investigate the dependence of frequency on the amplitude of oscillations. 1. Write the equation that relates the applied force (not the spring force) on a spring to the displacement from...

  • 1. Give two examples whose motion is described by simple harmonic motion. (Besides mass-spring system) 2....

    1. Give two examples whose motion is described by simple harmonic motion. (Besides mass-spring system) 2. The equation of motion for a mass of 100g in a mass-spring system is 2nt x(t) = 3Cos(f 3 Find the value of spring constant k.

  • Part 1: (Theory) Simple Pendulum 1. Consider a mass m hanging from a string of length...

    Part 1: (Theory) Simple Pendulum 1. Consider a mass m hanging from a string of length L that makes an angle with the vertical (shown below). Assume the string is massless and that the hanging object is a point mass. Use Newton's Second Law directly to show that the equation of motion for this simple pendulum can be written: (LO) = -mgsin(o), (1) dia where is the angular displacement of the pendulum from its vertical equilibrium position (and is a...

  • 7. A block of mass 1.6 kg is moving across a smooth floor at 13.8 m/s...

    7. A block of mass 1.6 kg is moving across a smooth floor at 13.8 m/s and encounters a second block (initially at rest) of mass 3.4 kg in a fully elastic collision. The second block is attached to a spring of k = 1250 N/m. Assume the spring to be massless and does not interfere with the collision. After the collision, the second block is under simple harmonic motion. Determine, a. The amplitude of oscillation b. The frequency of...

  • 13. A damped mass-spring system with mass m, spring constant k, and damping constant b is...

    13. A damped mass-spring system with mass m, spring constant k, and damping constant b is driven by an external force with frequency w and amplitude Fo. 2662 where, wo is the (a) Show that the maximum oscillation amplitude occurs when w = natural frequency of the system. where, wd is the (b) Show that the maximum oscillation amplitude at that frequency is A = frequency of the undriven, damped system.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT