Question

Question 1) By drawing molecular orbital diagrams for B2, C2, N2, O2, and F2, predict which...

Question 1) By drawing molecular orbital diagrams for B2, C2, N2, O2, and F2, predict which of these homonuclear diatomic molecules are magnetic.

Question 2) Based on the molecular orbital diagram for NO, which of the following electronic configurations and statements are most correct?

Question 1) By drawing molecular orbital diagrams

1 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1
Concepts and reason

The concept used to solve this problem is based on the molecular orbital theory.

Firstly the molecular orbital diagram is drawn then bond order is calculated using the bonding and antibonding electrons. After that, check for its magnetic behaviour.

Fundamentals

Bond Order:

It tells the number of chemical bonds between the atoms.

The bond order can be calculated by using the formula given below.

Bondorder=[NbNa]2{\rm{Bond order }} = \frac{{{\rm{ }}\left[ {{N_{\rm{b}}}{\rm{ }} - {N_{\rm{a}}}{\rm{ }}} \right]}}{{\rm{2}}} …… (1)

Here, Nb{N_{\rm{b}}} is a number of electrons in bonding molecular orbital and Na{N_{\rm{a}}} number of electrons in an antibonding molecular orbital.

(A)

The total number of electrons of B2{{\rm{B}}_{\rm{2}}} is 1010 . The molecular orbital configuration of B2{{\rm{B}}_{\rm{2}}} of increasing order of energy is shown below.

σ1s2,σ1s2,σ2s2,σ2s2,π2pX1=π2pX1{\rm{\sigma 1}}{{\rm{s}}^{\rm{2}}},{{\rm{\sigma }}^*}{\rm{1}}{{\rm{s}}^{\rm{2}}},{\rm{\sigma 2}}{{\rm{s}}^{\rm{2}}}{\rm{,}}{{\rm{\sigma }}^*}{\rm{2}}{{\rm{s}}^{\rm{2}}},{\rm{\pi 2}}{{\rm{p}}_X}^1 = {\rm{\pi 2}}{{\rm{p}}_X}^1

molecular orbital diagram of B2
0*2pz
TT* 2px 1*2py
2p
+-
<
-
-
2p
PP
v
PZ
17
P,
P,
P, |
02pz
T2px 12py
6*2s
(
27
02s

The total number of electrons of O2{{\rm{O}}_{\rm{2}}} is 1616 . The molecular orbital configuration of O2{{\rm{O}}_{\rm{2}}} of increasing order of energy is shown below.

σ1s2,σ1s2,σ2s2,σ2s2,σ2pz2,π2pX2=π2pX2,π2pX1=π2pX1{\rm{\sigma 1}}{{\rm{s}}^{\rm{2}}},{{\rm{\sigma }}^*}{\rm{1}}{{\rm{s}}^{\rm{2}}},{\rm{\sigma 2}}{{\rm{s}}^{\rm{2}}}{\rm{,}}{{\rm{\sigma }}^*}{\rm{2}}{{\rm{s}}^{\rm{2}}},{\rm{\sigma 2}}{{\rm{p}}_z}^{\rm{2}},{\rm{\pi 2}}{{\rm{p}}_X}^2 = {\rm{\pi 2}}{{\rm{p}}_X}^2,{{\rm{\pi }}^*}{\rm{2}}{{\rm{p}}_X}^1 = {{\rm{\pi }}^*}{\rm{2}}{{\rm{p}}_X}^1

molecular orbital diagram of 02
0*2pz
TT* 2px 12py
2p
| 464
4 + + 2p
PX Py PZU
P

P,
T+2px
2py
02pz
6*2s
2s
o2s

The total number of electrons of C2{{\rm{C}}_{\rm{2}}} is 1212 . The molecular orbital configuration of C2{{\rm{C}}_{\rm{2}}} of increasing order of energy is shown below.

σ1s2,σ1s2,σ2s2,σ2s2,π2pX2=π2pX2{\rm{\sigma 1}}{{\rm{s}}^{\rm{2}}},{{\rm{\sigma }}^*}{\rm{1}}{{\rm{s}}^{\rm{2}}},{\rm{\sigma 2}}{{\rm{s}}^{\rm{2}}}{\rm{,}}{{\rm{\sigma }}^*}{\rm{2}}{{\rm{s}}^{\rm{2}}},{\rm{\pi 2}}{{\rm{p}}_X}^2 = {\rm{\pi 2}}{{\rm{p}}_X}^2

molecular orbital diagram of C2
0*2pz
TT* 2px 1*2py
2p
It-2p
+
| PX
+-
Py
PZ
1 px Py PI
02pz
Tt2px 12py
6*2s
OK
( 25
+
+
o2s

The total number of electrons of N2{{\rm{N}}_{\rm{2}}} is 1414 . The molecular orbital configuration of N2{{\rm{N}}_{\rm{2}}} of increasing order of energy is shown below.

σ1s2,σ1s2,σ2s2,σ2s2,π2pX2=π2pX2,σ2pz2{\rm{\sigma 1}}{{\rm{s}}^{\rm{2}}},{{\rm{\sigma }}^*}{\rm{1}}{{\rm{s}}^{\rm{2}}},{\rm{\sigma 2}}{{\rm{s}}^{\rm{2}}}{\rm{,}}{{\rm{\sigma }}^*}{\rm{2}}{{\rm{s}}^{\rm{2}}},{\rm{\pi 2}}{{\rm{p}}_X}^2 = {\rm{\pi 2}}{{\rm{p}}_X}^2{\rm{,\sigma 2}}{{\rm{p}}_z}^{\rm{2}}

molecular orbital diagram of N2
N
0*2pz
*2px 元*2py
2p | 444
Hey
4441)
| P P P ||
P
P
P
02pz
元2px 元2py
G*2s
( 25 )
o2s

The total number of electrons of F2{{\rm{F}}_{\rm{2}}} is 1818 . The molecular orbital configuration of F2{{\rm{F}}_{\rm{2}}} of increasing order of energy is shown below.

σ1s2,σ1s2,σ2s2,σ2s2,σ2pz2,π2pX2=π2pX2,π2pX2=π2pX2{\rm{\sigma 1}}{{\rm{s}}^{\rm{2}}},{{\rm{\sigma }}^*}{\rm{1}}{{\rm{s}}^{\rm{2}}},{\rm{\sigma 2}}{{\rm{s}}^{\rm{2}}}{\rm{,}}{{\rm{\sigma }}^*}{\rm{2}}{{\rm{s}}^{\rm{2}}},{\rm{\sigma 2}}{{\rm{p}}_z}^{\rm{2}},{\rm{\pi 2}}{{\rm{p}}_X}^2 = {\rm{\pi 2}}{{\rm{p}}_X}^2,{{\rm{\pi }}^*}{\rm{2}}{{\rm{p}}_X}^2 = {{\rm{\pi }}^*}{\rm{2}}{{\rm{p}}_X}^2

molecular orbital diagram of F2
0*2pz
*
*
TT*2px 1*2py
2p
147
4
Py
PX
+
P,
2p
Tt2px 12py
02pz
0*2s
25
42
o2s

(B)

The total number of electrons of NO{\rm{NO}} is 1515 . The molecular orbital configuration of NO{\rm{NO}} of increasing order of energy is shown below.

σ1s2,σ1s2,σ2s2,σ2s2,σ2pz2,π2pX2=π2pX2,π2pX1{\rm{\sigma 1}}{{\rm{s}}^{\rm{2}}},{{\rm{\sigma }}^*}{\rm{1}}{{\rm{s}}^{\rm{2}}},{\rm{\sigma 2}}{{\rm{s}}^{\rm{2}}}{\rm{,}}{{\rm{\sigma }}^*}{\rm{2}}{{\rm{s}}^{\rm{2}}},{\rm{\sigma 2}}{{\rm{p}}_z}^{\rm{2}},{\rm{\pi 2}}{{\rm{p}}_X}^2 = {\rm{\pi 2}}{{\rm{p}}_X}^2,{{\rm{\pi }}^*}{\rm{2}}{{\rm{p}}_X}^1

molecular orbital diagram of NO
Z
0*2pz
TT* 2px 12py
2p +
| Р,
+
Ру
+
Р,
P
ta
+
P,
2p
T2px 12py
02pz
0*2s
(
24
4
25
02s

There is an unpaired electron present in the orbital of NO{\rm{NO}} . Therefore, it is paramagnetic in nature.

Ans: Part A

The homonuclear diatommic molecule B2{{\bf{B}}_{\bf{2}}} and O2{{\bf{O}}_{\bf{2}}} are magnetic.

Part B

The configuration σ2s2,σ2s2,σ2p2,π2p4,π2p1{\rm{\sigma 2}}{{\rm{s}}^{\rm{2}}}{\rm{,}}{{\rm{\sigma }}^*}{\rm{2}}{{\rm{s}}^{\rm{2}}},{\rm{\sigma 2}}{{\rm{p}}^{\rm{2}}},{\rm{\pi 2}}{{\rm{p}}^4},{{\rm{\pi }}^*}{\rm{2}}{{\rm{p}}^1} magnetic is the most correct.

Add a comment
Know the answer?
Add Answer to:
Question 1) By drawing molecular orbital diagrams for B2, C2, N2, O2, and F2, predict which...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT