Question

1. A system with a transfer function, S-2 H(s)= (s+2)(s2 - 1)

a. Indicate all possible ROC that can be associated with this system.

b. Find the corresponding impulse responses.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solutions HCS 2 s-2 s-2 ca) (5+2) (s?-1) (5+2) (Sti)(-1) All possible Rocs are : Rels) y - 2 Recs) >-1 Recs) < (5) H92 s-2 A

Add a comment
Know the answer?
Add Answer to:
1. A system with a transfer function, a. Indicate all possible ROC that can be associated...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. The transfer function of a CT LTI system is given by H(s) (s2 +6s +10) (s2 -4s +8) a) Draw the...

    2. The transfer function of a CT LTI system is given by H(s) (s2 +6s +10) (s2 -4s +8) a) Draw the pole-zero plot of the transfer function. b) Show all possible ROC's associated with this transfer function. c) Obtain the impulse response h(t) associated with each ROC of the transfer function. d) Which one (if any) of the impulse responses of part c) is stable? 2. The transfer function of a CT LTI system is given by H(s) (s2...

  • Consider an LTI system for which the system (transfer) function H(s) has a zero at s=2...

    Consider an LTI system for which the system (transfer) function H(s) has a zero at s=2 and poles at s=-12, -7, -6. If the system is known to be causal and stable, choose the ROC associated with the given system function. *

  • 1. A discrete-time LTI system has the system function H() given below: (a) Sketch the pole-zero...

    1. A discrete-time LTI system has the system function H() given below: (a) Sketch the pole-zero plot for this system How many possible regions of convergence (ROCs) are there for H(). List the possible ROCs and indicate what type of sequence (left-sided, right-sided, two-sided, finite-length) they correspond to. (b) Which ROC (or ROCs) correspond to a stable system Why? (c) Which ROC (or ROCs) correspond to a causal system? Why? (d) Write a difference equation that relates the input to...

  • Please show all the steps clearly. Find the system transfer function of a causal LSI system...

    Please show all the steps clearly. Find the system transfer function of a causal LSI system whose impulse response is given by 2. 0.5)"l sin[0.5(n- 2)]u[n - 2] and express the result in positive powers of z. 72-1 h[n] = Hint: The transfer function is just the z-transform of impulse response. However, we must first convert the power of -0.5 from (n - 1) to (n - 2) by suitable algebraic manipulation Find the system transfer function of a causal...

  • a continuous time causal LTI system has a transfer function: H(s)=(s+3)/(s^2 +3s +2) a) find the...

    a continuous time causal LTI system has a transfer function: H(s)=(s+3)/(s^2 +3s +2) a) find the poles and zeros b) indicate the poles and the zeros on the s-plane indicate the region of convergence (ROC) c) write the differential equation of the system. d) determine the gain of the system at dc (ie the transfer function at w=0) e) is the system described by H(s) stable? explain f) for the system described by H(s), does the Fourier transform H(jw) exist?...

  • For the following transfer function of an LTI system: Q.3) For the following transfer function of an ITI system: 8-5 (a...

    For the following transfer function of an LTI system: Q.3) For the following transfer function of an ITI system: 8-5 (a) Sketch the pole-zero plot. (b) If the system is stable, determine the large Why. st pssible ROC. Is the systeu causal? Explairn (c) If the system is causal, determine the lar gest possible ROC. Is the system stable? Explain Q.3) For the following transfer function of an ITI system: 8-5 (a) Sketch the pole-zero plot. (b) If the system...

  • A discrete-time LTI system has the system function H(z) given below: 2 H(z (a) Sketch the...

    A discrete-time LTI system has the system function H(z) given below: 2 H(z (a) Sketch the pole-zero plot for this system. How many possible (ROCs) are there for H(z). List the possible ROCs and indicate what type of sequence (left-sided, right-sided, two-sided, finite-length) they correspond to (b) Which ROC (or ROCs) correspond to a stable system? Why? (c) Which ROC (or ROCs) correspond to a causal system? Why? (d) Write a difference equation that relates the input to the output...

  • A discrete-time LTI system has the system function H(z) given below:

    A discrete-time LTI system has the system function \(H(z)\) given below:$$ H(z)=\frac{z^{2}}{z^{2}-\frac{1}{4}} $$(a) Sketch the pole-zero plot for this system. How many possible regions of convergence (ROCs) are there for \(H(z)\). List the possible ROCs and indicate what type of sequence (left-sided, right-sided, two-sided, finite-length) they correspond to.(b) Which ROC (or ROCs) correspond to a stable system? Why?(c) Which ROC (or ROCs) correspond to a causal system? Why?(d) Write a difference equation that relates the input to the output of...

  • A continuous-time LTI system has unit impulse response h(t). The Laplace transform of h(t), also called...

    A continuous-time LTI system has unit impulse response h(t). The Laplace transform of h(t), also called the “transfer function” of the LTI system, is . For each of the following cases, determine the region of convergence (ROC) for H(s) and the corresponding h(t), and determine whether the Fourier transform of h(t) exists. (a) The LTI system is causal but not stable. (b) The LTI system is stable but not causal. (c) The LTI system is neither stable nor causal 8...

  • 2. Consider a linear time-invariant system with transfer function H(s)Find the (s + α)(s + β) impulse response, h(t), of the system 2. Consider a linear time-invariant system with transfer f...

    2. Consider a linear time-invariant system with transfer function H(s)Find the (s + α)(s + β) impulse response, h(t), of the system 2. Consider a linear time-invariant system with transfer function H(s)Find the (s + α)(s + β) impulse response, h(t), of the system

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT