Question

X X X X X X x x X x X X XL X x X X X x X Be paper x Two parallel rails are connected together at one end by a resistance of R
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Therefore circuit in anticlorack wise direction as shown in х x x x x х X X X Y > V RE X x x х X L x x х x x cuorrenta Х х Xdirection of According to Lenas law the induced magnetic field due to induced worent will be in that direction which these r

Add a comment
Know the answer?
Add Answer to:
X X X X X X x x X x X X XL X x X...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 1.50-m-long metal bar is pulled to the right at a steady 4.0 m/s perpendicular to a uniform

    A 1.50-m-long metal bar is pulled to the right at a steady 4.0 m/s perpendicular to a uniform, 0.5T magnetic field. The bar rides on parallel metal rails connected through R = 24.0Ω, as shown in the figure below, so the apparatus makes a complete circuit. You can ignore the resistance of the bar and the rails. a) (5.0 pts) Calculate the magnitude of the emf induced in the circuit. b) (5.0 pts) Find the direction of the current induced in the...

  • A 1.10-m-long metal bar is pulled to the right at a steady 4.0 m/s perpendicular to...

    A 1.10-m-long metal bar is pulled to the right at a steady 4.0 m/s perpendicular to a uniform, 0.790-T magnetic field. The bar rides on parallel metal rails connected through R = 25.5-Ω, as shown in the figure (Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and the rails. A) Calculate the magnitude of the emf induced in the circuit. Express your answer using two significant figures. B)Find the direction of...

  • RS ws Inside 1. You have two parallel metal rails that are connected by a 32...

    RS ws Inside 1. You have two parallel metal rails that are connected by a 32 resistor as shown in the figure on the right. You slide a metal bar onto the rails so that the two rails, the bar, and the resistor make a complete circuit. The bar has a length of 0.16 m. You place this apparatus inside a uniform magnetic field with a strength of 0.57 T that points into the page. You pull the bar to...

  • A metal crossbar with resistance R lies across conducting rails in a constant magnetic field B...

    A metal crossbar with resistance R lies across conducting rails in a constant magnetic field B pointing out of the page as shown. The bar is moving at a speed v as indicated to the right. The rails have negligible electrical resistance compared to the crossbar, and you may neglect friction in the sliding of the crossbar. (a) What is the direction of the induced current flowing in the crossbar? Explain your reasoning. (b) Systematically develop an expression for the...

  • Exercise 29.28 Constants Part A A 1.15-m-long metal bar is pulled to the right at a...

    Exercise 29.28 Constants Part A A 1.15-m-long metal bar is pulled to the right at a steady 6.0 m/s perpendicular to a uniform, 0.765-T magnetic field. The bar rides on parallel metal rails connected through R-24.5-2, as shown in the figure (Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and the rails. Calculate the magnitude of the emf induced in the circuit Express your answer using two significant figures. Request Answer...

  • 3. A 0.650- m long metal bar is pulled to the right at a steady 5.0...

    3. A 0.650- m long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.750 T magnetic field. The bar rides on parallel metal rails connected through a 25.0 Ohm resistor. (1) Calculate the magnitude of the emf induced in the circuit (2) Calculate the current in the circuit and show its direction. (3) Which point has a higher potential? Explain it based on (6) Magnetic force on the charges in a moving...

  • 23. As shown in the figure below, a conducting bar of length - 20 em is pulled to the left on frictionlessrails at...

    23. As shown in the figure below, a conducting bar of length - 20 em is pulled to the left on frictionlessrails at a constant speed of y 20 m/s. A uniform magnetic field directed out of the page has a magnitude of B-O1T If the rails are connected to a resistor of resistance R-4.0 Ω andan ideal battery of emf e-1.6V, find the magnitude and direction of the current flowing in the circuit formed. Assume that the bar and...

  • please show work when possible so that I may better understand. Thank you. x=L The rail gun consists of two thick conducting rails connected to a power supply and there is a magnetic field ass...

    please show work when possible so that I may better understand. Thank you. x=L The rail gun consists of two thick conducting rails connected to a power supply and there is a magnetic field assumed to be uniform and constant in the direction shown. A short conducting bar that is to be (or carry) the projectile is placed across the bars at x -0. The current flows through the bars as shown. The magnetic force on the bar causes it...

  • 1. A conducting bar of resistance R = 0.100 S2 and mass m = 0.15 kg...

    1. A conducting bar of resistance R = 0.100 S2 and mass m = 0.15 kg slides without friction along two x x x x x 1 parallel conducting rails of negligible resistance Ebat X X X X X 1 positioned a distance l = 0.080 m apart, as shown, in a region with a uniform magnetic field of magnitude B = 1.50 T oriented perpendicularly to the plane of the rails. A battery of emf Ebat = 24.0 V...

  • Use 3 Sig Figs in this Problem Part A - What is the EMF induced across...

    Use 3 Sig Figs in this Problem Part A - What is the EMF induced across the ends of the bar? Part B What is the current flowing in the loop? Part C What is the applied force required to move the bar to the right with a constant speed of 6.00 m/s? Part D At what rate is energy dissipated in the 4.00 Ω resistor? A conducting bar (negligible resistance) moves along frictionless conducting rails (negligible resistance) connected to...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT