Question

Consider a one dimensional square well potential

297F5294-85A0-405E-BF33-0D47C3F011D2.jpg

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Consider a one dimensional square well potential
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Consider a one-dimensional well with one impenetrable wall. The potential energy is given by 0 x...

    Consider a one-dimensional well with one impenetrable wall. The potential energy is given by 0 x < 0 V(x) = { -V. 0 < x < a 10 x > a We showed in the homework that the allowed energies for the eigenstates of a bound particle (E < 0) in this potential well satisfy the transcendental function -cotĚ = 16 - 52 $2 where 5 = koa, and ko = V2m(Vo + E)/ħ, and 5o = av2mV /ħ (a)...

  • Consider a particle in a 1-dimensional ininite square well potential {0, V(z)=Í oo, (-a < z...

    Consider a particle in a 1-dimensional ininite square well potential {0, V(z)=Í oo, (-a < z <a) elsewhere The particle is initially localized in the right side of the well (O S a) Calculate the probability that at later times, an energy measurement will yield the energy of the first excited state of this system

  • 1) Consider a particle with mass m confined to a one-dimensional infinite square well of length...

    1) Consider a particle with mass m confined to a one-dimensional infinite square well of length L. a) Using the time-independent Schrödinger equation, write down the wavefunction for the particle inside the well. b) Using the values of the wavefunction at the boundaries of the well, find the allowed values of the wavevector k. c) What are the allowed energy states En for the particle in this well? d) Normalize the wavefunction

  • 4. (20 points). δ. unction perturbation. Consider a particle in a one-dimensional infinite square well with...

    4. (20 points). δ. unction perturbation. Consider a particle in a one-dimensional infinite square well with boundaries at -a and-a. We introduce the following 6-function perturbation at x=0: a. Compute the first-order corrections to the energies of the particle induced by the ν' perturbation b. Recall that you solved this problem exactly in problem set 4 (Griffiths 2.43). Compare your perturbation theory result to the exact solution.

  • [Finite potential well] Consider a symmetric square well potential of a finite depth, i.e., V(x) =...

    [Finite potential well] Consider a symmetric square well potential of a finite depth, i.e., V(x) = 0 inside the well, V(x) = V outside the well. NOTE: for a general discontinuous potential the boundary conditions are the continuity of both the wave function and its first derivative at the point(s) of the discontinuity of the potential y (x_)=y(x),y'(x_)=y'(x4) (i) What are the functional forms of the solutions for y(x) inside and outside the well? (ii) What are the explicit continuity...

  • The one-dimensional infinite potential well can be generalized to three dimensions.

    (25 marks) The one-dimensional infinite potential well can be generalized to three dimensions. The allowed energies for a particle of mass \(m\) in a cubic box of side \(L\) are given by$$ E_{n_{p} n_{r, n_{i}}}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) \quad\left(n_{x}=1,2, \ldots ; n_{y}=1,2, \ldots ; n_{z}=1,2, \ldots\right) $$(a) If we put four electrons inside the box, what is the ground-state energy of the system? Here the ground-state energy is defined to be the minimum energy of the system of electrons. You...

  • 4. (20 points). 5-function perturbation. Consider a particle in a one-dimensional infinite square well with boundaries...

    4. (20 points). 5-function perturbation. Consider a particle in a one-dimensional infinite square well with boundaries at x--a and x-a. We introduce the following δ-function perturbation at V'(x) 00(z). a. Compute the first-order corrections to the energies of the particle induced by the perturbation b. Recall that you solved this problem exactly in problem set 4 (Griffiths 2.43). Compare your perturbation theory result to the exact solution

  • At time t = 0, a mass-m particle in a one-dimensional potential well is in a...

    At time t = 0, a mass-m particle in a one-dimensional potential well is in a state given by the normalised wave function (x, 0) =3/2eAl2| | -ao x << 0, realU>0. Find the potential energy V = the energy eigenvalue E. Fix zero energy according to the convention V(x) » 0 for ao. Is there a delta function singularity at x0? V (x) for which this is an energy eigenstate and determine [6] At time t = 0, a...

  • Suppose that an electron is trapped in a one- dimensional, infinite potential well of width 250...

    Suppose that an electron is trapped in a one- dimensional, infinite potential well of width 250 nm is excited from the 2nd excited state to the fifth excited state. What energy must be transferred to the electron in order to make this transition? Answer: 1.62 x 10^-4 eV Check Correct Marks for this submission: 2.00/2.00. What wavelength photon does this correspond to? Answer: 75.15*10^-4m Check Considering all of the possible ways that the excited electron can de-excite back down to...

  • An electron in a one-dimensional infinite potential well of width L is found to have the...

    An electron in a one-dimensional infinite potential well of width L is found to have the normalized wave function ψ(x)- sin(2 r ). (a) What is the probability of finding the electron within the interval from x=010 x = L/2 ? (b) At what position or positions is the electron most likely to be found? In other words, find the value(s) of x where the probability of finding the particle is the greatest?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT