Question

Consider a one-dimensional well with one impenetrable wall. The potential energy is given by 0 x < 0 V(x) = { -V. 0 < x < a 1

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Consider a one-dimensional well with one impenetrable wall. The potential energy is given by 0 x...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A particle is trapped in a one-dimensional potential energy well given by: 100 x < 0...

    A particle is trapped in a one-dimensional potential energy well given by: 100 x < 0 0 < x <L U(x) = L < x < 2L (20. x > 2L Consider the case when U, < E < 20., where E is the particle energy. a. Write down the solutions to the time-independent Schrödinger equation for the wavefunction in the four regions using appropriate coefficients. Define any parameters used in terms of the particles mass m, E, U., and...

  • At time t = 0, a mass-m particle in a one-dimensional potential well is in a...

    At time t = 0, a mass-m particle in a one-dimensional potential well is in a state given by the normalised wave function (x, 0) =3/2eAl2| | -ao x << 0, realU>0. Find the potential energy V = the energy eigenvalue E. Fix zero energy according to the convention V(x) » 0 for ao. Is there a delta function singularity at x0? V (x) for which this is an energy eigenstate and determine [6] At time t = 0, a...

  • DApdr Q2. An electron is trapped in an one dimensional infinite potential well of length L...

    DApdr Q2. An electron is trapped in an one dimensional infinite potential well of length L Calculate the Probability of finding the electron somewhere in the region 0 <xLI4. The ground state wave function of the electron is given as ㄫㄨ (r)sin (5 Marks) O lype hene to search

  • 1. A particle of mass m moves in the one-dimensional potential: x<-a/2 x>a/2 Sketch the potential....

    1. A particle of mass m moves in the one-dimensional potential: x<-a/2 x>a/2 Sketch the potential. Sketch what the wave functions would look like for α = 0 for the ground state and the 1st excited state. Write down a formula for all of the bound state energies for α = 0 (no derivation necessary). a) b) Break up the x axis into regions where the Schrödinger equation is easy to solve. Guess solutions in these regions and plug them...

  • 5. One-Dimensional Potential Energy (20 points) A particle of mass m oscillates in a potential well...

    5. One-Dimensional Potential Energy (20 points) A particle of mass m oscillates in a potential well created by a one-dimensional force where a and b are known positive constants. Assume the particle is trapped in the well on the positive side of the y-axis. a) Find and expression for the potential energy U(x) for this force. (10 points) NOTE: There will be one undetermined constant. b) Set Umin, the minimum value for this potential energy function, equal to zero. Solve...

  • Instead of assuming that a one-dimensional particle has no energy (v(x)=0), consider the case of a...

    Instead of assuming that a one-dimensional particle has no energy (v(x)=0), consider the case of a one-dimensional particle which has finite, but constant, energy V(x)= V sub zero.. Show that the ID particle in a box wave functions. n(x)= A sin ((pi n x)/a). Also solve the Schrödinger equation for this potential, and determine the energies En Problem 2: Particle in a Box with Non-Zero Energy (2 points) Instead of assuming that a one-dimensional particle has no energy (V(x) =...

  • 1. Consider a 1D finite square well potential defined as follows. Vo-a<x<a V(x) = 0otherwise a)...

    1. Consider a 1D finite square well potential defined as follows. Vo-a<x<a V(x) = 0otherwise a) What are the energy eigenfunctions n of the Hamiltonian for a single particle bound in this potential? You may write your answer in piece-wise form, with an arbitrary normalization. b) Derive the characteristic equation that the energy eigenvalues E, must satisfy in order to satisfy the eigenvalue equation Hy,-EnUn for eigen function Un c) Write a computer program1 to find the eigenvalues E, for...

  • Consider the 1D square potential energy well shown below. A particle of mass m is about to be tra...

    Consider the 1D square potential energy well shown below. A particle of mass m is about to be trapped in it. a) (15 points) Start with an expression for this potential energy and solve the Schrödinger 2. wave equation to get expressions for(x) for this particle in each region. (10 points) Apply the necessary boundary conditions to your expressions to determine an equation that, when solved for E, gives you the allowed energy levels for bound states of this particle....

  • An electron is trapped in a one-dimensional infinite potential well that is 160 pm wide; the...

    An electron is trapped in a one-dimensional infinite potential well that is 160 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width Δx = 8.0 pm centered at the following? (Hint: The interval Δx is so narrow that you can take the probability density to be constant within it.) (a) x = 25 pm Incorrect: Your answer is incorrect. (b) x = 50 pm (c)...

  • Part A A three-dimensional potential well has potential Uo = 0 in the region 0 <...

    Part A A three-dimensional potential well has potential Uo = 0 in the region 0 < x <L, 0<y<L, and 0 <z<2L and infinite potential otherwise. The ground state energy of a particle in the well is E. What is the energy of the first excited state, and what is the degeneracy of that state? 3Eo, triple degeneracy 2Eo, single degeneracy 2Eo, double degeneracy (7/3)Eo, double degeneracy (4/3)Eo, single degeneracy Submit Request Answer

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT