Question

Consider the 1D square potential energy well shown below. A particle of mass m is about to be trapped in it. a) (15 points) S
0 0
Add a comment Improve this question Transcribed image text
Answer #1

·大2 天. 需d.tly-E»-o 2 2. This k

Add a comment
Know the answer?
Add Answer to:
Consider the 1D square potential energy well shown below. A particle of mass m is about to be tra...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Q4. Consider the 1D infinite square-well potential shown in the figure below. V(x) O0 Position (a)...

    Q4. Consider the 1D infinite square-well potential shown in the figure below. V(x) O0 Position (a) State the time-independent Schrödinger equation within the region 0<x<L for a particle with positive energy E 2 marks] (b) The wavefunction for 0<x< L can be written in the general form y(x) = Asin kx + B cos kx. Show that the normalised wavefunction for the 1D infinite potential well becomes 2sn'n? ?snT/where ( "1,2,3 ! where ( n = 1,2,5, ). [4 marks]...

  • 1. Consider a 1D finite square well potential defined as follows. Vo-a<x<a V(x) = 0otherwise a)...

    1. Consider a 1D finite square well potential defined as follows. Vo-a<x<a V(x) = 0otherwise a) What are the energy eigenfunctions n of the Hamiltonian for a single particle bound in this potential? You may write your answer in piece-wise form, with an arbitrary normalization. b) Derive the characteristic equation that the energy eigenvalues E, must satisfy in order to satisfy the eigenvalue equation Hy,-EnUn for eigen function Un c) Write a computer program1 to find the eigenvalues E, for...

  • Instead of assuming that a one-dimensional particle has no energy (v(x)=0), consider the case of a...

    Instead of assuming that a one-dimensional particle has no energy (v(x)=0), consider the case of a one-dimensional particle which has finite, but constant, energy V(x)= V sub zero.. Show that the ID particle in a box wave functions. n(x)= A sin ((pi n x)/a). Also solve the Schrödinger equation for this potential, and determine the energies En Problem 2: Particle in a Box with Non-Zero Energy (2 points) Instead of assuming that a one-dimensional particle has no energy (V(x) =...

  • 1l] A particle with mass m and energy E is inside a square tube with infinite potential barriers at x-o, x-a, y 0,...

    1l] A particle with mass m and energy E is inside a square tube with infinite potential barriers at x-o, x-a, y 0, y a. The tube is infinitely long in the +z-direction. (a) Solve the Schroedinger equation to derive the allowed wave functions for this particle. Do not try to normalize the wave functions, but make sure they correspond to motion in +2-direction. (b) Determine the allowed energies for such a particle. (c) If we were to probe the...

  • Problem 4.1 - Odd Bound States for the Finite Square Well Consider the finite square well...

    Problem 4.1 - Odd Bound States for the Finite Square Well Consider the finite square well potential of depth Vo, V(x) = -{ S-V., –a sx sa 10, else In lecture we explored the even bound state solutions for this potential. In this problem you will explore the odd bound state solutions. Consider an energy E < 0 and define the (real, positive) quantities k and k as 2m E K= 2m(E + V) h2 h2 In lecture we wrote...

  • 4. Answer the following short answer questions. a. For the particle in a square well, when...

    4. Answer the following short answer questions. a. For the particle in a square well, when solving Schrödinger equation in all regions, one gets the following wavefunctions (where A,B,C,D,F, and G are constants): 4.(x) = Ce** + De-*** (x) = A cos Bx + B sin Bx m(x) = Fe*:* + Ge-*** where Region 1/2 [2m(V. - E) (2mE ki and B = Since there are six unknown constants, one needs six boundary conditions/constraints to complete the problem. State the...

  • 6. The Particle in a Box problem refers to a potential energy function called the infinite square...

    6. The Particle in a Box problem refers to a potential energy function called the infinite square well, aka the box: ; x < 0 (Region I) V(x) = 0 : 0 L (Region II) x x >L (Region III) Let's investigate a quantum particle with mass m and energy E in this potential well of length L We were unable to transcribe this image6d (continued) write down an equation relating ψ, (x = 0) to ψ"(x I and II....

  • 5. One-Dimensional Potential Energy (20 points) A particle of mass m oscillates in a potential well...

    5. One-Dimensional Potential Energy (20 points) A particle of mass m oscillates in a potential well created by a one-dimensional force where a and b are known positive constants. Assume the particle is trapped in the well on the positive side of the y-axis. a) Find and expression for the potential energy U(x) for this force. (10 points) NOTE: There will be one undetermined constant. b) Set Umin, the minimum value for this potential energy function, equal to zero. Solve...

  • (III) Quantum Tunneling Consider an electron in 1D in presence of a potential barrier of width...

    (III) Quantum Tunneling Consider an electron in 1D in presence of a potential barrier of width L represented by a step function ſo I<0 or 1>L V U. r>0 and 2<L The total wavefunction is subject to the time-independent Schrödinger equation = EV (2) 2m ar2 +V where E is the energy of the quantum particle in question and m is the mass of the quantum particle. A The total wavefunction of a free particle that enters the barrier from...

  • A NON stationary state A particle of mass m is in an infinite square well potential of width L, a...

    A NON stationary state A particle of mass m is in an infinite square well potential of width L, as in McIntyre's section 5.4. Suppose we have an initial state vector lv(t -0) results from Mclntrye without re-deriving them, and you may use a computer for your math as long as you include your code in your solution A(3E1) 4iE2)). You may use E. (4 pts) Use a computer to plot this probability density at 4 times: t 0, t2...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT