Question

5. One-Dimensional Potential Energy (20 points) A particle of mass m oscillates in a potential well created by a one-dimensional force where a and b are known positive constants. Assume the particle is trapped in the well on the positive side of the y-axis. a) Find and expression for the potential energy U(x) for this force. (10 points) NOTE: There will be one undetermined constant. b) Set Umin, the minimum value for this potential energy function, equal to zero. Solve for the undetermined constant in terms of a and b. (10 points)
media%2Fcba%2Fcbaf805a-494f-4d10-a802-e7
0 0
Add a comment Improve this question Transcribed image text
Answer #1

4 tc 七 o. ST S ayhalf any fun thitnk 따 Thankyu CIU

Add a comment
Know the answer?
Add Answer to:
5. One-Dimensional Potential Energy (20 points) A particle of mass m oscillates in a potential well...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A particle is trapped in a one-dimensional potential energy well given by: 100 x < 0...

    A particle is trapped in a one-dimensional potential energy well given by: 100 x < 0 0 < x <L U(x) = L < x < 2L (20. x > 2L Consider the case when U, < E < 20., where E is the particle energy. a. Write down the solutions to the time-independent Schrödinger equation for the wavefunction in the four regions using appropriate coefficients. Define any parameters used in terms of the particles mass m, E, U., and...

  • Consider the 1D square potential energy well shown below. A particle of mass m is about to be tra...

    Consider the 1D square potential energy well shown below. A particle of mass m is about to be trapped in it. a) (15 points) Start with an expression for this potential energy and solve the Schrödinger 2. wave equation to get expressions for(x) for this particle in each region. (10 points) Apply the necessary boundary conditions to your expressions to determine an equation that, when solved for E, gives you the allowed energy levels for bound states of this particle....

  • At time t = 0, a mass-m particle in a one-dimensional potential well is in a...

    At time t = 0, a mass-m particle in a one-dimensional potential well is in a state given by the normalised wave function (x, 0) =3/2eAl2| | -ao x << 0, realU>0. Find the potential energy V = the energy eigenvalue E. Fix zero energy according to the convention V(x) » 0 for ao. Is there a delta function singularity at x0? V (x) for which this is an energy eigenstate and determine [6] At time t = 0, a...

  • A particle of mass m is bound by the spherically-symmetric three-dimensional harmonic- oscillator potential energy ,...

    A particle of mass m is bound by the spherically-symmetric three-dimensional harmonic- oscillator potential energy , and ф are the usual spherical coordinates. (a) In the form given above, why is it clear that the potential energy function V) is (b) For this problem, it will be more convenient to express this spherically-symmetric where r , spherically symmetric? A brief answer is sufficient. potential energy in Cartesian coordinates x, y, and z as physically the same potential energy as the...

  • Consider a one-dimensional well with one impenetrable wall. The potential energy is given by 0 x...

    Consider a one-dimensional well with one impenetrable wall. The potential energy is given by 0 x < 0 V(x) = { -V. 0 < x < a 10 x > a We showed in the homework that the allowed energies for the eigenstates of a bound particle (E < 0) in this potential well satisfy the transcendental function -cotĚ = 16 - 52 $2 where 5 = koa, and ko = V2m(Vo + E)/ħ, and 5o = av2mV /ħ (a)...

  • Consider a particle of mass m moving in a one-dimensional potential of the form V. for...

    Consider a particle of mass m moving in a one-dimensional potential of the form V. for 0<x<b, V(a) = 0 for Islal<e, for 1212, with V., b and c positive constants and c>b. a Explain why the wave function of the particle can be assumed to be cither an even function or an odd function of a. b For the case that the energy E of the particle is in the range 0<ESV., find the (unnormalized) even cigenfunctions and give...

  • Question 8 10 points A particle is placed at a finite one dimensional well. If this...

    Question 8 10 points A particle is placed at a finite one dimensional well. If this particle has the energy half of the potential trapping it, i.e. E=0.5V, what is the probability that the particle could be found outside but near the well? O 1/2 O Greater than zero Oo

  • Instead of assuming that a one-dimensional particle has no energy (v(x)=0), consider the case of a...

    Instead of assuming that a one-dimensional particle has no energy (v(x)=0), consider the case of a one-dimensional particle which has finite, but constant, energy V(x)= V sub zero.. Show that the ID particle in a box wave functions. n(x)= A sin ((pi n x)/a). Also solve the Schrödinger equation for this potential, and determine the energies En Problem 2: Particle in a Box with Non-Zero Energy (2 points) Instead of assuming that a one-dimensional particle has no energy (V(x) =...

  • A particle of mass m moves in one dimension. Its potential energy is given by U(x)...

    A particle of mass m moves in one dimension. Its potential energy is given by U(x) = -Voe-22/22 where U, and a are constants. (a) Draw an energy diagram showing the potential energy U(). Choose some value for the total mechanical energy E such that -U, < E < 0. Mark the kinetic energy, the potential energy and the total energy for the particle at some point of your choosing. (b) Find the force on the particle as a function...

  • Need help with this question A particle of mass m is in the one-dimensional potential a....

    Need help with this question A particle of mass m is in the one-dimensional potential a. Argue, based on dimensional arguments dhat the enersy levelust be of the form With α, β, γ being numerical coefficients and c(n) being a positive numerical coefficient that depends on the energy levels. Determine the values of a, β and γ.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT