Question

In this figure the image is produced by a lens. At which position is the focal point of the lens? Object A B C D E Image ОА O

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Focal point of lense is at E

From given situation lense should be at position C. Image is magnified so objects should be near left focal point, than focal point is at point E.

Add a comment
Know the answer?
Add Answer to:
In this figure the image is produced by a lens. At which position is the focal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A converging lens with a focal length of 12.0cm forms a virtual image 8.00mm tall. Image...

    A converging lens with a focal length of 12.0cm forms a virtual image 8.00mm tall. Image is 17.0cm from the lens. Calculate (a)the position of the object, (b)magnification of the lens, (c)height of the object. (d)Is the image upright or inverted? (e) Are the object and image on the same side or opposite sides of the lens? (f) Draw ray-diagram

  • Two-lens systems. In the figure, stick figure O (the object) stands on the common central axis...

    Two-lens systems. In the figure, stick figure O (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to O, which is at object distance p1. Lens 2 is mounted within the farther boxed region, at distance d. Each problem in the table refers to a different combination of lenses and different values for distances, which are given in centimeters. The...

  • Two-lens systems. In the figure, stick figure (the object) stands on the common central axis of...

    Two-lens systems. In the figure, stick figure (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to O, which is at object distance p1. Lens 2 is mounted within the farther boxed region, at distance d. Each problem in the table refers to a different combination of lenses and different values for distances, which are given in centimeters. The type...

  • Two-lens systems. In the figure, stick figure 0 (the object) stands on the common central axis...

    Two-lens systems. In the figure, stick figure 0 (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to O, which is at object distance p1. Lens 2 is mounted within the farther boxed region, at distance d. Each problem in the table refers to a different combination of lenses and different values for distances, which are given in centimeters. The...

  • 1 A converging lens with a focal length of 12.2 cm forms a virtual image 7.9mm...

    1 A converging lens with a focal length of 12.2 cm forms a virtual image 7.9mm tall, 11 2emto right of the lens. a. Determine the position of the object. b. Determine the size of the object. Is the image upright or inverted? Are the object and image on the same side or opposite sides of the lens? c. d. 2 You want to use a lens with a focal length of magnitude 36cm with the image twice as long...

  • PRINIENVENSION CES Two-lens systems. In the figure, stick figure O (the object) stands on the common...

    PRINIENVENSION CES Two-lens systems. In the figure, stick figure O (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the baxed region closer to O, which is at object distance P. Lens 2 is mounted within the farther boxed region, at distance d. Each problem in the table refers to a different combination of lenses and different values for distances, which are given in...

  • For what position of the object will a converging lens not project an image on the...

    For what position of the object will a converging lens not project an image on the screen? a) At a distance greater than twice the focal length b) Between the focus and the lens c) At a distance equal to twice the focal length d) Between the focus and a distance of twice the focal length.

  • Two-lens systems. In the figure, stick figure O (the object) stands on the common central axis...

    Two-lens systems. In the figure, stick figure O (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to o, which is at object distance P1. Lens 2 is mounted within the farther boxed region, at distance d. Each problem in the table refers to a different combination of lenses and different values for distances which are given in centimeters. The...

  • Two-lens systems. In the figure, stick figure O (the object) stands on the common central axis of...

    Two-lens systems. In the figure, stick figure O (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to O, which is at object distance p1. Lens 2 is mounted within the farther boxed region, at distance d. Each problem in the table refers to a different combination of lenses and different values for distances, which are given in centimeters. The...

  • A 4-cm tall object is placed 59.2 cm from a diverging lens having a focal length...

    A 4-cm tall object is placed 59.2 cm from a diverging lens having a focal length of -29.5 cm. a) Is the image produced by this lens virtual or real? b) Is the image inverted or upright? c) Is the image on the same side of the lens as the object or on the opposite side as the object? d) Where is the image located? (Please provide the magnitude of the position, no negative numbers) e) How tall is the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT