Question

In the figure below, eight particles form a square, with distanced between adjacent particles. What is...

In the figure below, eight particles form a square, with distanced between adjacent particles. What is the electricpotential at point P at the center of the square if theelectric potential is zero at infinity?
1Your answer is correct.q/4πε0d


***Why is the answer -4?? Please explain. Thanks****
0 0
Add a comment Improve this question Transcribed image text
Answer #1
Concepts and reason

The main concept used to solve the problem is electric potential due to a point charge.

Initially, Calculate the distance of the charges on the corners of the square from the center using Pythagoras theorem.

Finally, calculate the magnitude and direction of electric potential using the relation equating electric potential with charge and distance.

Fundamentals

The electric potential is a quantity numerically equal to the potential energy of a unit positive charge at a given point of the field. The formula for electric potential is,

V=keqrV = \frac{{{k_{\rm{e}}}q}}{r}

Here, ke{k_{\rm{e}}} is coulomb’s constant, qq is the charge and rr is the distance.

The figure given below shows the arrangement of charges around the square.

+4
+54. W
Y -54
+49
-24

Here, qq is the charge and d is the distance.

From the figure given above,

In triangle XAW,

XA2+WA2=XW2{\rm{X}}{{\rm{A}}^2} + {\rm{W}}{{\rm{A}}^2} = {\rm{X}}{{\rm{W}}^2}

Substitute dd for XA{\rm{XA}} and WA{\rm{WA}} in the above equation.

XW2=2d2XW=2d\begin{array}{c}\\{\rm{X}}{{\rm{W}}^2} = 2{d^2}\\\\{\rm{XW = }}\sqrt 2 d\\\end{array}

Also, rPA=rPB=rPC=rPD=r=XW=2d{r_{{\rm{PA}}}} = {r_{{\rm{PB}}}} = {r_{{\rm{PC}}}} = {r_{{\rm{PD}}}} = r = {\rm{XW = }}\sqrt 2 d

The electric potential at point P due to the charge placed at the corner of the square A is,

VPA=keqArPA{V_{{\rm{PA}}}} = \frac{{{k_{\rm{e}}}{q_{\rm{A}}}}}{{{r_{{\rm{PA}}}}}}

Here, ke{k_{\rm{e}}} is the coulomb’s constant, qA{q_{\rm{A}}} is the charge at point A and rPA{r_{{\rm{PA}}}} is the distance of point A from point P.

Substitute 2d\sqrt 2 d for rPA{r_{{\rm{PA}}}} and 4q- 4q for qA{q_{\rm{A}}} in the above equation.

VPA=4keq2d{V_{{\rm{PA}}}} = \frac{{ - 4{k_{\rm{e}}}q}}{{\sqrt 2 d}}

The electric potential at point P due to the charge placed at the corner of the square B is,

VPB=keqBrPB{V_{{\rm{PB}}}} = \frac{{{k_{\rm{e}}}{q_{\rm{B}}}}}{{{r_{{\rm{PB}}}}}}

Here, ke{k_{\rm{e}}} is the coulomb’s constant, qB{q_{\rm{B}}} is the charge at point B and rPB{r_{{\rm{PB}}}} is the distance of point B from point P.

Substitute 2d\sqrt 2 d for rPB{r_{{\rm{PB}}}} and qq for qB{q_{\rm{B}}} in the above equation.

VPB=keq2d{V_{{\rm{PB}}}} = \frac{{{k_{\rm{e}}}q}}{{\sqrt 2 d}}

The electric potential at point P due to the charge placed at the corner of the square C is,

VPC=keqCrPC{V_{{\rm{PC}}}} = \frac{{{k_{\rm{e}}}{q_{\rm{C}}}}}{{{r_{{\rm{PC}}}}}}

Here, ke{k_{\rm{e}}} is the coulomb’s constant, qC{q_{\rm{C}}} is the charge at point C and rPC{r_{{\rm{PC}}}} is the distance of point C from point P.

Substitute 2d\sqrt 2 d for rPC{r_{{\rm{PC}}}} and 4q4q for qC{q_{\rm{C}}} in the above equation.

VPC=4keq2d{V_{{\rm{PC}}}} = \frac{{4{k_{\rm{e}}}q}}{{\sqrt 2 d}}

The electric potential at point P due to the charge placed at the corner of the square D is,

VPD=keqDrPD{V_{{\rm{PD}}}} = \frac{{{k_{\rm{e}}}{q_{\rm{D}}}}}{{{r_{{\rm{PD}}}}}}

Here, ke{k_{\rm{e}}} is the coulomb’s constant, qD{q_{\rm{D}}} is the charge at point D and rPD{r_{{\rm{PD}}}} is the distance of point D form point P.

Substitute 2d\sqrt 2 d for rPD{r_{{\rm{PD}}}} and q- q for qD{q_{\rm{D}}} in the above equation.

VPD=keq2d{V_{{\rm{PD}}}} = \frac{{ - {k_{\rm{e}}}q}}{{\sqrt 2 d}}

From the figure given above,

rPX=rPY=rPZ=rPW=d{r_{{\rm{PX}}}} = {r_{{\rm{PY}}}} = {r_{{\rm{PZ}}}} = {r_{{\rm{PW}}}} = d

The electric potential at point P due to the charge placed at point X is,

VPX=keqXrPX{V_{{\rm{PX}}}} = \frac{{{k_{\rm{e}}}{q_{\rm{X}}}}}{{{r_{{\rm{PX}}}}}}

Here, ke{k_{\rm{e}}} is the coulomb’s constant, qX{q_{\rm{X}}} is the charge at point X and rPX{r_{{\rm{PX}}}} is the distance of point X from point P.

Substitute dd for rPX{r_{{\rm{PX}}}} and 2q- 2q for qX{q_{\rm{X}}} in the above equation.

VPX=2keqd{V_{{\rm{PX}}}} = \frac{{ - 2{k_{\rm{e}}}q}}{d}

The electric potential at point P due to the charge placed at point Y is,

VPY=keqYrPY{V_{{\rm{PY}}}} = \frac{{{k_{\rm{e}}}{q_{\rm{Y}}}}}{{{r_{{\rm{PY}}}}}}

Here, ke{k_{\rm{e}}} is the coulomb’s constant, qY{q_{\rm{Y}}} is the charge at point Y and rPY{r_{{\rm{PY}}}} is the distance of point Y from point P.

Substitute dd for rPY{r_{{\rm{PY}}}} and 5q- 5q for qY{q_{\rm{Y}}} in the above equation.

VPY=5keqd{V_{{\rm{PY}}}} = \frac{{ - 5{k_{\rm{e}}}q}}{d}

The electric potential at point P due to the charge placed at point Z is,

VPZ=keqZrPZ{V_{{\rm{PZ}}}} = \frac{{{k_{\rm{e}}}{q_{\rm{Z}}}}}{{{r_{{\rm{PZ}}}}}}

Here, ke{k_{\rm{e}}} is the coulomb’s constant, qZ{q_{\rm{Z}}} is the charge at point C and rPZ{r_{{\rm{PZ}}}} is the distance of point Z from point P.

Substitute dd for rPZ{r_{{\rm{PZ}}}} and 2q- 2q for qZ{q_{\rm{Z}}} in the above equation.

VPZ=2keqd{V_{{\rm{PZ}}}} = \frac{{ - 2{k_{\rm{e}}}q}}{d}

The electric potential at point P due to the charge placed at point W is,

VPW=keqWrPW{V_{{\rm{PW}}}} = \frac{{{k_{\rm{e}}}{q_{\rm{W}}}}}{{{r_{{\rm{PW}}}}}}

Here, ke{k_{\rm{e}}} is the coulomb’s constant, qW{q_{\rm{W}}} is the charge at point W and rPW{r_{{\rm{PW}}}} is the distance of point W form point P.

Substitute dd for rPW{r_{{\rm{PW}}}} and 5q5q for qW{q_{\rm{W}}} in the above equation.

VPW=5keqd{V_{{\rm{PW}}}} = \frac{{5{k_{\rm{e}}}q}}{d}

The total potential at point P due to all the charges is,

Vtot=VPA+VPB+VPC+VPD+VPX+VPY+VPZ+VPW{V_{{\rm{tot}}}} = {V_{{\rm{PA}}}} + {V_{{\rm{PB}}}} + {V_{{\rm{PC}}}} + {V_{{\rm{PD}}}} + {V_{{\rm{PX}}}} + {V_{{\rm{PY}}}} + {V_{{\rm{PZ}}}} + {V_{{\rm{PW}}}}

Substitute 4keq2d\frac{{ - 4{k_{\rm{e}}}q}}{{\sqrt 2 d}} for VPA{V_{{\rm{PA}}}} , keq2d\frac{{{k_{\rm{e}}}q}}{{\sqrt 2 d}} for VPB{V_{{\rm{PB}}}} , 4keq2d\frac{{4{k_{\rm{e}}}q}}{{\sqrt 2 d}} for VPC{V_{{\rm{PC}}}} , keq2d\frac{{ - {k_{\rm{e}}}q}}{{\sqrt 2 d}} for VPD{V_{{\rm{PD}}}} , 2keqd\frac{{ - 2{k_{\rm{e}}}q}}{d} for VPX{V_{{\rm{PX}}}} , 5keqd\frac{{ - 5{k_{\rm{e}}}q}}{d} for VPY{V_{{\rm{PY}}}} , 2keqd\frac{{ - 2{k_{\rm{e}}}q}}{d} for VPZ{V_{{\rm{PZ}}}} and 5keqd\frac{{5{k_{\rm{e}}}q}}{d} for VPW{V_{{\rm{PW}}}} in the above equation.

Vtot=VPA+VPB+VPC+VPD+VPX+VPY+VPZ+VPW=4keq2d+keq2d+4keq2d+keq2d+2keqd+5keqd+2keqd+5keqd\begin{array}{c}\\{V_{{\rm{tot}}}} = {V_{{\rm{PA}}}} + {V_{{\rm{PB}}}} + {V_{{\rm{PC}}}} + {V_{{\rm{PD}}}} + {V_{{\rm{PX}}}} + {V_{{\rm{PY}}}} + {V_{{\rm{PZ}}}} + {V_{{\rm{PW}}}}\\\\ = \frac{{ - 4{k_{\rm{e}}}q}}{{\sqrt 2 d}} + \frac{{{k_{\rm{e}}}q}}{{\sqrt 2 d}} + \frac{{4{k_{\rm{e}}}q}}{{\sqrt 2 d}} + \frac{{ - {k_{\rm{e}}}q}}{{\sqrt 2 d}} + \frac{{ - 2{k_{\rm{e}}}q}}{d} + \frac{{ - 5{k_{\rm{e}}}q}}{d} + \frac{{ - 2{k_{\rm{e}}}q}}{d} + \frac{{5{k_{\rm{e}}}q}}{d}\\\end{array}

Vtot=4keqd{V_{{\rm{tot}}}} = \frac{{ - 4{k_{\rm{e}}}q}}{d} …… (1)

Also, the coulomb’s constant is given by,

ke=14πε0{k_{\rm{e}}} = \frac{1}{{4\pi {\varepsilon _0}}}

Substitute 14πε0\frac{1}{{4\pi {\varepsilon _0}}} for ke{k_{\rm{e}}} in equation (1).

Vtot=4(q4πε0d){V_{{\rm{tot}}}} = - 4\left( {\frac{q}{{4\pi {\varepsilon _0}d}}} \right)

Ans:

The electric potential at point P is 4(q4πε0d)- 4\left( {\frac{q}{{4\pi {\varepsilon _0}d}}} \right) .

Add a comment
Know the answer?
Add Answer to:
In the figure below, eight particles form a square, with distanced between adjacent particles. What is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT