Question

1-Given the function:

1-Given the function: \(y=\frac{x^{2}-3 x-4}{x^{2}-5 x+4}\), decide if \(f(x)=y\) is continuous or has a removable discontinuity, and find horizontal tond vertical asymptotes.

2 A-Use the definition \(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\) to prove that derivative of \(f(x)=\sqrt{4-x}\) is \(\frac{-1}{2 \sqrt{4-x}}\)

2 B- Evaluate the limit \(\lim _{h \rightarrow 0} \frac{f(x+h) - f(x)}{h}\) for the given value of \(x\) and function \(f(x) .\)

$$ f(x)=\sin x, \quad x=\frac{\pi}{4} $$

3-Given the function: \(y=(x+4)^{3}(x-2)^{2}\), find y' and classify critical numbers very carefully using first derivative tess oniy.

4-For the function \(f(x)=\sin x+\sqrt{3} \cos x\), find absolute maximum, minimum, increasing, decreasing, concave up, and concave down over \([0,2 \pi]\).

5- Differentiate and simplify your answer

$$ y x=\sqrt{1+x y} $$

\(x \sin y+y \cos x=1\)

Find the \(\frac{d y}{d x}\) Using implicit differcntiation where \(\quad x+\tan (x+y)=x^{2} y^{3}\)

$$ y=\ln (\sec x+\tan x) $$

$$ \begin{aligned} &y=\sin ^{5}\left(1-x^{2}\right) \\ &y=\ln \left(\frac{\left(x^{2}-3\right)^{3}(x+4)^{4}}{(1-x)^{2}}\right) \end{aligned} $$

6-Use implicit differentiation to find \(\frac{dy}{d x}\) were \(y^{2}+x y+4 y=x^{3}+5\)

7-Differentiate: \(y=\left(\frac{x-1}{x+1}\right)^{5}\) simplify your answer

8- Find all the points on the graph of the function \(f(x)=2 \sin x+\sin ^{2} x\) at which the tangent line is horizontal, \(0 \leq \mathrm{x} \leq 2 \mathrm{~T}\).

1 0
Add a comment Improve this question Transcribed image text
Answer #1

1. Given function
y = (x^2 - 3x - 4)/(x^2 - 5x + 4)
y = (x - 4)(x + 1)/(x - 4)(x - 1)
now,
we can see, at x = 4, lim x -> 4 y = 5/3 , this is removable discontinuity
at x = 1, we see that
lim x-> 1- y = -inf and lim x-> 1+ y = +inf , hence this is an infinite discontinuity
the vertical asymptotes are when dy/dx = inf
dy/dx = [(x^2 - 5x + 4)(2x - 3) - (x^2 - 3x - 4)(2x - 5)]/(x^2 - 5x + 4)
so, this happens at x = 1,

for horizontal asymptote
lim x-> inf y = 1
lim x -> -inf y = 1
hence y = 1 is horizontal asymptote

2.A. df(x)/dx = lim h -> 0 ((f(x + h) - f(x))/h)
f(x) = sqrt(4 - x)
df(x)/dx = lim h -> 0 (sqrt(4 - x - h) - sqrt(4 - x))/h
df(x)/dx = lim h -> 0 (4 - x - h -4 + x)/h*(sqrt(4 - x - h) + sqrt(4 - x))
df(x)/dx = lim h -> 0 1/(sqrt(4 - x - h) + sqrt(4 - x))
df(x)/dx = -1/2(sqrt(4 - x))

2.B. f(x) = sin(x)
f'(x) = cos(x)
at x = pi/4, f'(pi/4) = cos(pi/4) = sin(pi/4) = 1/sqrt(2)


3. y = (x + 4)^3(x - 2)^2
y' = 3(x + 4)^2(x - 2)^2 + 2(x + 4)^3(x - 2)
so, critical points
y = 0
hence, x = -4, or x = 2
so (-4,0), (2,0) are critical points

and y' = 0
3(x + 4)^2(x - 2)^2 + 2(x + 4)^3(x - 2) = 0
3(x - 2) + 2(x + 4) = 0
3x - 6 + 2x + 8 = 5x + 2 = 0
x = -2/5 = -0.4
(-0.4, 268.73856) , x = -4, x = 2 are critical points as well
(-4, 0) , (2, 0)
hence,

maxima at x = -0.4,
minima at x = -4 and x = 2
value 0 at x = -4 and x = 2

4. f(x) = sin(x) + sqrt(3)*cos(x)   
f(x) = 2[sin(x)*sin(30) + cos(x)cos(30)]
f(x) = 2[cos(x - 30)]
  
so for [0, 2*pi] interval
for [0, pi/6] the function is increasing,
for [pi/6, 7pi/6], the function is decreasing,
from [7pi/6, pi] the function is increasing

absolute maximum is 2, amsolute minimum is -2
between [0, 2*pi/3] the function is concave down
between [2*pi/3 , 5*pi/3] the function is concave down
then between [5*pi/3, 2*pi] the function is concave up
  

Add a comment
Know the answer?
Add Answer to:
1-Given the function:
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • PLEASE ANSWER ALL FIVE PROBLEMS

    Find \(\mathrm{dy} / \mathrm{dt}\).12) \(y=\cos ^{5}(\pi t-8)\)A) \(-5 \pi \cos ^{4}(\pi t-8) \sin (\pi t-8)\)B) \(-5 \cos ^{4}(\pi \mathrm{t}-8) \sin (\pi \mathrm{t}-8)\)C) \(5 \cos ^{4}(\pi t-8)\)D) \(-5 \pi \sin ^{4}(\pi t-8)\)Use implicit differentiation to find dy/dx.13) \(x y+x=2\)A) \(-\frac{1+y}{x}\)B) \(\frac{1+y}{x}\)C) \(\frac{1+x}{y}\)D) \(-\frac{1+x}{y}\)Find the derivative of \(y\) with respect to \(x, t\), or \(\theta\), as appropriate.14) \(y=\ln 8 x^{2}\)A) \(\frac{2}{x}\)B) \(\frac{1}{2 x+8}\)C) \(\frac{2 x}{x^{2}+8}\)D) \(\frac{16}{x}\)Find the derivative of \(\mathrm{y}\) with respect to \(\mathrm{x}, \mathrm{t}\), or \(\theta\), as appropriate.15) \(y=\left(x^{2}-2 x+6\right) e^{x}\)A)...

  • Consider the heat conduction problem

    5. If \(f(x)=\left\{\begin{array}{cc}0 & -2<x<0 \\ x & 0<x<2\end{array} \quad\right.\)is periodio of period 4 , and whose Fourier series is given by \(\frac{a_{0}}{2}+\sum_{n=1}^{2}\left[a_{n} \cos \left(\frac{n \pi}{2} x\right)+b_{n} \sin \left(\frac{n \pi}{2} x\right)\right], \quad\) find \(a_{n}\)A. \(\frac{2}{n^{2} \pi^{2}}\)B. \(\frac{(-1)^{n}-1}{n^{2} \pi^{2}}\)C. \(\frac{4}{n^{2} \pi^{2}}\)D. \(\frac{2}{n \pi}\)\(\mathbf{E}_{1} \frac{2\left((-1)^{n}-1\right)}{n^{2} \pi^{2}}\)F. \(\frac{4}{n \pi}\)6. Let \(f(x)-2 x-l\) on \([0,2]\). The Fourier sine series for \(f(x)\) is \(\sum_{w}^{n} b_{n} \sin \left(\frac{n \pi}{2} x\right)\), What is \(b, ?\)A. \(\frac{4}{3 \pi}\)B. \(\frac{2}{\pi}\)C. \(\frac{4}{\pi}\)D. \(\frac{-4}{3 \pi}\)E. \(\frac{-2}{\pi}\)F. \(\frac{-4}{\pi}\)7. Let \(f(x)\) be periodic...

  • Find for the given F and C

    Find \(\int_{C} \vec{F} \cdot d r\) for the given \(\vec{F}\) and \(C\).\(\cdot \vec{F}=-y \vec{i}+x \vec{j}+7 \vec{k}\) and \(C\) is the helix \(x=\cos t, y=\sin t r \quad z=t\), for \(0 \leq t \leq 2 \pi .\)$$ \int_{C} \vec{F} \cdot d \vec{r}= $$Find \(\int_{C} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}\) for \(\overrightarrow{\mathrm{F}}=e^{y} \overrightarrow{\mathrm{i}}+\ln \left(x^{2}+1\right) \overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}}\) and \(C\), the circle of radius 4 centered at the origin in the \(y z\)-plane as shown below.$$ \int_{C} \vec{F} \cdot d \vec{r}= $$

  • Use the information given about the angle

    Use the information given about the angle \(8,0 \leq 8 \leq 2 \pi\), to find the exact value of the indicated trigonometric function.\(\operatorname{cod}(2 \theta)=\frac{1}{4}, 0<\theta<\frac{\pi}{2} \quad\) Find \(\cos \theta\)\(\frac{\sqrt{8-2 \sqrt{10}}}{4}\)\(\frac{\sqrt{8-2 \sqrt{5}}}{2}\)\(\frac{\sqrt{6}}{4}\)\(\frac{\sqrt{10}}{4}\)

  • The graphs of f and g are given. Use them to evaluate each limit, if it exists. (If an answer does not exist, enter...

    The graphs of f and g are given. Use them to evaluate each limit, if it exists. (If an answer does not exist, enter DNE.) (a) \(\lim _{x \rightarrow 2}[f(x)+g(x)]\)(b) \(\lim _{x \rightarrow 1}[f(x)+g(x)]\)(c) \(\lim _{x \rightarrow 0}[f(x) g(x)]\)(d) \(\lim _{x \rightarrow-1} \frac{f(x)}{g(x)}\)(e) \(\lim _{x \rightarrow 2}\left[x^{3} f(x)\right]\)(f) \(\lim _{x \rightarrow 1} \sqrt{3+f(x)}\)

  • Solve Laplace's equation on

    Solve Laplace's equation on \(-\pi \leq x \leq \pi\) and \(0 \leq y \leq 1\),$$ \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 $$subject to periodic boundary conditions in \(x\),$$ \begin{aligned} u(-\pi, y) &=u(\pi, y) \\ \frac{\partial u}{\partial x}(-\pi, y) &=\frac{\partial u}{\partial x}(\pi, y) \end{aligned} $$and the Dirichlet conditions in \(y\),$$ u(x, 0)=h(x), \quad u(x, 1)=0 $$

  • Question 1. Compute the derivative of the following functions.

    Question 1. Compute the derivative of the following functions.(a) \(f(x)=x^{3}-\frac{2}{\sqrt{x}}+4\)(b) \(f(x)=2^{3 x-1}\)(c) \(f(x)=\ln \left(5 x^{2}+1\right)\)(d) \(f(x)=\frac{\tan (x)}{x^{2}+1}\)(e) \(f(x)=e^{x^{2}} \cdot \arctan (2 x)\)(f) \(f(x)=\sin (x)^{2} \cdot\left(\tan (x)+\cos (x)^{2}\right)\).Question 2. In geometry, the folium of Descartes is a curve given by the equation$$ x^{3}+y^{3}-3 a x y=0 $$Here, \(a\) is a constant.The curve was first proposed by Descartes in 1638 . Its claim to fame lies in an incident in the development of calculus. Descartes challenged Fermat to find the tangent line...

  • find an expression for the area of the region under the graphf(x)=x^4 on the interval...

    find an expression for the area of the region under the graph f(x)=x^4 on the interval [1,7]. use right-Hand endpoints as sample points choices1. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{7 i}{n}\right)^{4} \frac{7}{n}\)2. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{9 i}{n}\right)^{4} \frac{6}{n}\)3. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{6 i}{n}\right)^{4} \frac{6}{n}\)4. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{7 i}{n}\right)^{4} \frac{6}{n}\)5. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{6 i}{n}\right)^{4} \frac{7}{n}\)6. area \(=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{9 i}{n}\right)^{4} \frac{7}{n}\)

  • Given that cos x =

    Given that \(\cos x=\frac{1}{3}, x \in\left[-\frac{\pi}{2}, 0\right]\) find \(\sin x\) and \(\tan x\)\(\sin x=\frac{2}{3}\) and \(\tan x=2\)\(\sin x=\frac{\sqrt{8}}{3}\) and \(\tan x=\sqrt{8}\)\(\sin x=-\frac{\sqrt{8}}{3}\) and \(\tan x=\sqrt{8}\)\(\sin x=-\frac{\sqrt{8}}{3}\) and \(\tan x=-\sqrt{8}\)

  • Evaluate f(x, y, z) for the specified function

    Evaluate \(\iiint_{\mathcal{B}} f(x, y, z) d V\) for the specified function \(f\) and \(\mathcal{B}\) :$$ f(x, y, z)=\frac{z}{x} \quad 2 \leq x \leq 16,0 \leq y \leq 5,0 \leq z \leq 2 $$\(\iiint_{\mathcal{B}} f(x, y, z) d V=\)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT