Question

An ideal dual combustion cycle operates on 454 kg. of air. At the beginning of compression, the air is at 96.53 kPa, 43.3-deg

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ces a solution - Ideel dual cylce is shown on P-n diegrem as shown in figure - at is given, Yr prec Arre Mars of air = m =454procen ( -6 Py = B = 4156 266 kpe Vy = (1-6)/v) = (1-6)( 38.813) = 62.1008 m2 Ty = (vy) (9) - 1980.92°k c (6.2.1083 ( 921 976

Add a comment
Know the answer?
Add Answer to:
An ideal dual combustion cycle operates on 454 kg. of air. At the beginning of compression,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Q1. An ideal dual cycle engine works with a stroke volume of 10 litres of air...

    Q1. An ideal dual cycle engine works with a stroke volume of 10 litres of air with a compression ratio of 16. The pressure and temperature of air before isentropic compression is 1 bar and 300 K respectively. If the heat is added at a constant pressure of 70 bar and 5% of the stroke, determine: (10 M) i. ii. Pressure ratio Cut-off ratio iii. iv. V. vi. vii. viii. Mass of air contained in the cylinder Heat added per...

  • (12 points) An ideal Otto cycle operates with a compression ratio of 10. At the beginning...

    (12 points) An ideal Otto cycle operates with a compression ratio of 10. At the beginning of the compression process, the air is at 101 kPa and 27°C. During the constant volume heat addition process, 790 kJ/kg of heat is transferred to the air. Accounting for variable specific heats with temperature, determine: the maximum temperature during the cycle 1266.862 °C the maximum pressure during the cycle 6239.424 kPa the specific net work output 475.495481 kJ/kg the mean effective pressure (MEP)...

  • An ideal Otto cycle has a compression ratio of 8. At the beginning of the transferred compression...

    An ideal Otto cycle has a compression ratio of 8. At the beginning of the transferred compression process, air is at 95 kPa and 27-degree C, and 750 kJ/kg of heat is to air during the constant-volume heat-addition process. Considering the variation of specific heats with temperature (Table A-17), determine (a) the pressure and temperature at the end of the heat addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the...

  • 4. A4.6 L spark ignition engine operates on the ideal Otto cycle with a compression ratio of 10. At the beginning of the compression process the air is at 107 kPa and 21 C. The maximum cycle temp...

    4. A4.6 L spark ignition engine operates on the ideal Otto cycle with a compression ratio of 10. At the beginning of the compression process the air is at 107 kPa and 21 C. The maximum cycle temperature is 1116°C. Accounting for variable specific heats, determine: (a) the heat addition per cycle in kJ. Ans: 3.368 kJ (b) the net work per cycle in kJ. Ans: 1.907 kJ (c) the mean effective pressure in kPa. Ans: 460.6 kPa (d) the...

  • At the beginning of the compression process of an air standard Diesel cycle, the pressure is 109 ...

    At the beginning of the compression process of an air standard Diesel cycle, the pressure is 109 kPa and the temperature is 284 K. The volume of state 1 is 800.0 cm3. The compression ratio for the Diesel cycle is 12 and cut-off-ratio is 1.95. Determine: a) the heat addition, in kJ kJ b) the net work, in kJ kJ c) the thermal efficiency % d) the mean effective pressure, in kPa kPa At the beginning of the compression process...

  • Calculate without constant specific heat (Cp).   An air-standard dual cycle has a compression ratio of 14...

    Calculate without constant specific heat (Cp).   An air-standard dual cycle has a compression ratio of 14 and cut-off ratio of 1.2. The pressure ratio during constant volume heat addition is 1.5. Determine the: (A) Thermal efficiency (B) Amount of heat added (C) Maximum gas pressure and temperature when the cycle is operated at 80kPA and 20°C at the beginning of the compression.

  • Use variable specific heats. An air-standard dual cycle has a compression ratio of 14 and cut-off...

    Use variable specific heats. An air-standard dual cycle has a compression ratio of 14 and cut-off ratio of 1.2. The pressure ratio during constant volume heat addition (process 2-X) is 1.5. Determine the: (A) Thermal efficiency (B) Amount of heat added (C) Maximum gas pressure and temperature when the cycle is operated at 80kPA and 20°C at the beginning of the compression. Use variable specific heats.

  • 15. An air-standard, ideal gas cycle with limited-pressure combustion is used to evaluate an idea...

    15. An air-standard, ideal gas cycle with limited-pressure combustion is used to evaluate an ideal compression ignition engine. The compression ratio is 12. The maximum temperature in the cycle is 2040 °F. The minimum temperature and pressure in the cycle is 40 OF and 20 psia, respectively. The coefficient β=1.2 (β is the ratio of the volume after to the volume before the constant pressure heat input process). Calculate the heat added during combustion per lbm of air, and the...

  • 2. An ideal Diesel cycle has a compression ratio of 18 and a cut-off ratio of...

    2. An ideal Diesel cycle has a compression ratio of 18 and a cut-off ratio of 2. At the beginning of the compression process P = 95 kPa and T = 20°C. (a) Find the temper- ature, pressure and specific volume at states 1, 2, 3, and 4. (b) Find the heat supplied, heat rejected, work done by the system, work done on the system, net work done, and thermal efficiency. (c) Calculate the thermal efficiency of a Carnot cycle...

  • An ideal Otto cycle has a compression ratio of 9. At the beginning of the compression...

    An ideal Otto cycle has a compression ratio of 9. At the beginning of the compression process, air is at 100 kPa and 17°C, and 900 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat-addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle .

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT